• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería de Sistemas de Información
  • View Item
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería de Sistemas de Información
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of UPCCommunitiesTitleAuthorsAdvisorIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsAdvisorIssue DateSubmit DateSubjectsProfilesView

My Account

LoginRegister

Quick Guides

AcercaPolíticasPlantillas de tesis y trabajos de investigaciónFormato de publicación de tesis y trabajos de investigaciónFormato de publicación de otros documentosLista de verificación

Statistics

Display statistics

Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Average rating
 
   votes
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
 
Your vote was cast
Thank you for your feedback
Authors
Kraenau, Nicole
Silva, Mariano
Castaneda, Pedro
Issue Date
2024-01-01
Keywords
Consumer credit
Delinquency
Hybrid model

Metadata
Show full item record
Publisher
Institute of Electrical and Electronics Engineers Inc.
Journal
Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024
URI
http://hdl.handle.net/10757/676327
DOI
10.1109/ISoIRS63136.2024.00066
Abstract
The delinquency rate among clients of banking institutions in Peru has increased exponentially in recent years, due to the lack of early detection of potentially delinquent clients, mainly due to the use of inadequate prediction techniques for the identification of delinquent clients. This causes profitability to be reduced, credit risk to increase and the country's economy to be unstable. Previously, different solutions were generated to prevent non-payment, however these studies were not applied in the Peruvian environment and did not cover the personal and financial variables necessary to improve the detection of delinquent clients. In this work, a delinquency prediction system is proposed using classification algorithms such as logistic regression and Random Forest, with the aim of improving and automating the early detection of delinquent clients and counteracting the increase in delinquency, so that banks can of Peru can reduce their financial losses due to non-payment by delinquent clients, and prevent the granting of consumer loans to clients who have a high probability of delinquency. After validating the performance of the algorithm using key indicators, it was obtained that the results are superior to the compared algorithms, thus showing a precision of 90 percent, a recall of 95 percent and an accuracy of 91 percent.
Type
info:eu-repo/semantics/article
Rights
info:eu-repo/semantics/embargoedAccess
Language
eng
ae974a485f413a2113503eed53cd6c53
10.1109/ISoIRS63136.2024.00066
Scopus Count
Collections
Ingeniería de Sistemas de Información

entitlement

 

DSpace software (copyright © 2002 - 2025)  DuraSpace
Quick Guide | Contact Us
Alicia
La Referencia
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.