Show simple item record

dc.contributor.authorAntunez, Julio C.
dc.contributor.authorSalazar, Johnny D.
dc.contributor.authorCastañeda, Pedro S.
dc.date.accessioned2024-09-29T18:38:03Z
dc.date.available2024-09-29T18:38:03Z
dc.date.issued2024-06-28
dc.identifier.doi10.1145/3677454.3677456
dc.identifier.urihttp://hdl.handle.net/10757/675912
dc.description.abstractMaking raw material purchase forecasts for companies is very difficult and, if inadequately controlled, can affect the company's decision making and profitability. Currently, there are optimized systems or mathematical models to try to predict the demands and solve this problem. In this study, a raw material purchase prediction model is proposed that uses the Elastic Net algorithm to analyze historical sales and inventory data. The model is used to improve prediction accuracy, allowing SMEs to optimize inventories, reduce costs and improve efficiency. Experimental results indicate that the proposed model obtains better results in the MAE, RMSE and R2 indicators.es_PE
dc.formatapplication/htmles_PE
dc.language.isoenges_PE
dc.publisherAssociation for Computing Machineryes_PE
dc.rightsinfo:eu-repo/semantics/embargoedAccesses_PE
dc.sourceRepositorio Academico - UPCes_PE
dc.sourceUniversidad Peruana de Ciencias Aplicadas (UPC)es_PE
dc.subjectInventory managementes_PE
dc.subjectModel interpretationes_PE
dc.subjectSMEses_PE
dc.titlePredictive model based on machine learning for raw material purchasing management in the retail sector.es_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.identifier.journalACM International Conference Proceeding Serieses_PE
dc.type.articleinfo:eu-repo/semantics/articlees_PE
dc.description.peerreviewRevisión por pareses_PE
dc.identifier.eid2-s2.0-85202845935
dc.identifier.scopusidSCOPUS_ID:85202845935
dc.source.journaltitleACM International Conference Proceeding Series
dc.source.beginpage6
dc.source.endpage11
dc.identifier.isni0000 0001 2196 144X


This item appears in the following Collection(s)

Show simple item record