• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería de Sistemas de Información
  • View Item
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería de Sistemas de Información
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of UPCCommunitiesTitleAuthorsAdvisorIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsAdvisorIssue DateSubmit DateSubjectsProfilesView

My Account

LoginRegister

Quick Guides

AcercaPolíticasPlantillas de tesis y trabajos de investigaciónFormato de publicación de tesis y trabajos de investigaciónFormato de publicación de otros documentosLista de verificación

Statistics

Display statistics

Predictive model based on machine learning for raw material purchasing management in the retail sector.

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Average rating
 
   votes
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
 
Your vote was cast
Thank you for your feedback
Authors
Antunez, Julio C.
Salazar, Johnny D.
Castañeda, Pedro S.
Issue Date
2024-06-28
Keywords
Inventory management
Model interpretation
SMEs

Metadata
Show full item record
Publisher
Association for Computing Machinery
Journal
ACM International Conference Proceeding Series
URI
http://hdl.handle.net/10757/675912
DOI
10.1145/3677454.3677456
Abstract
Making raw material purchase forecasts for companies is very difficult and, if inadequately controlled, can affect the company's decision making and profitability. Currently, there are optimized systems or mathematical models to try to predict the demands and solve this problem. In this study, a raw material purchase prediction model is proposed that uses the Elastic Net algorithm to analyze historical sales and inventory data. The model is used to improve prediction accuracy, allowing SMEs to optimize inventories, reduce costs and improve efficiency. Experimental results indicate that the proposed model obtains better results in the MAE, RMSE and R2 indicators.
Type
info:eu-repo/semantics/article
Rights
info:eu-repo/semantics/embargoedAccess
Language
eng
ae974a485f413a2113503eed53cd6c53
10.1145/3677454.3677456
Scopus Count
Collections
Ingeniería de Sistemas de Información

entitlement

 

DSpace software (copyright © 2002 - 2025)  DuraSpace
Quick Guide | Contact Us
Alicia
La Referencia
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.