• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería Electrónica
  • View Item
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería Electrónica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of UPCCommunitiesTitleAuthorsAdvisorIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsAdvisorIssue DateSubmit DateSubjectsProfilesView

My Account

LoginRegister

Quick Guides

AcercaPolíticasPlantillas de tesis y trabajos de investigaciónFormato de publicación de tesis y trabajos de investigaciónFormato de publicación de otros documentosLista de verificación

Statistics

Display statistics

MPEG-1 psychoacoustic model emulation using multiscale convolutional neural networks

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Average rating
 
   votes
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
 
Your vote was cast
Thank you for your feedback
Authors
Kemper, Guillermo
Sanchez, Alonso
Serpa, Sergio
Issue Date
2023-01-01
Keywords
audio coding
MPEG
neural networks
perceptual coding
psychoacoustic model

Metadata
Show full item record
Publisher
Springer
Journal
Multimedia Tools and Applications
URI
http://hdl.handle.net/10757/668741
DOI
10.1007/s11042-023-15949-y
Additional Links
https://link.springer.com/article/10.1007/s11042-023-15949-y
Abstract
The Moving Picture Experts Group - 1 (MPEG-1) perceptual audio compression scheme is a successful family of audio codecs described in standard ISO/IEC 11172–3. Currently, there is no general framework to emulate nor MPEG-1 neither any other psychoacoustic model, which is a core piece of many perceptual codecs. This work presents a successful implementation of a convolutional neural network which emulates psychoacoustic model 1 from the MPEG-1 standard, termed “MCNN-PM” (Multiscale Convolutional Neural Network – Psychoacoustic Model). It is then implemented as part of the MPEG-1, Layer I codec. Using the objective difference grade (ODG) to evaluate audio quality, the MCNN-PM MPEG-1, Layer I codec outperforms the original MPEG-1, Layer I codec by up to 17% at 96 kbps, 14% at 128 kbps and performs almost equally at 192 kbps. This work shows that convolutional neural networks are a viable alternative to standard psychoacoustic models and can be used as part of perceptual audio codecs successfully.
Type
info:eu-repo/semantics/article
Rights
info:eu-repo/semantics/embargoedAccess
Language
eng
ISSN
13807501
EISSN
15737721
ae974a485f413a2113503eed53cd6c53
10.1007/s11042-023-15949-y
Scopus Count
Collections
Ingeniería Electrónica

entitlement

 

DSpace software (copyright © 2002 - 2025)  DuraSpace
Quick Guide | Contact Us
Alicia
La Referencia
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.