An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2022-01-01
Metadata
Show full item recordJournal
11th International Conference on Communications, Circuits and Systems, ICCCAS 2022DOI
10.1109/ICCCAS55266.2022.9823981Additional Links
https://ieeexplore.ieee.org/document/9823981Abstract
This work proposes a computational algorithm which monitors voice/audio signals demodulated from a FM receptor and detects whether they are intelligible or not. Data analytics applications which require the continuous storage of radio broadcasted audio signals into a database can benefit from this algorithm. In many instances, the broadcasted signals arrive at the receptor with heavy distortion and noise content, limiting the data analysis due to poor data quality. Moreover, radio spectrum supervisory agencies can also take advantage of this work, since broadcasted signals can be efficiently and continuously monitored to detect whether a broadcaster has stopped transmitting for an extended period. First, the algorithm processes the demodulated signals block by block, extracting its MFCC coefficients, spectral centroid, the arithmetic and geometric means of the frequency magnitude spectrum and the zero-crossing rate in the time domain. Then, these parameters enter a classification algorithm based on three successive support vector machines (SVM), which output one of four possible classes for each block: intelligible clean signal, intelligible noisy signal, unintelligible noisy signal, and noise/silence signal. The algorithm has a 99.85% accuracy for intelligible clean signal versus unintelligible noisy/noise/silence signals; 97.34% accuracy for intelligible noisy signal versus noise/silence signals; and 96.36% accuracy for intelligible voice versus noise/silence.Type
info:eu-repo/semantics/articleRights
info:eu-repo/semantics/embargoedAccessLanguage
engae974a485f413a2113503eed53cd6c53
10.1109/ICCCAS55266.2022.9823981
Scopus Count
Collections