• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería de Sistemas de Información
  • View Item
  •   Home
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ingeniería de Sistemas de Información
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of UPCCommunitiesTitleAuthorsAdvisorIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsAdvisorIssue DateSubmit DateSubjectsProfilesView

My Account

LoginRegister

Quick Guides

AcercaPolíticasPlantillas de tesis y trabajos de investigaciónFormato de publicación de tesis y trabajos de investigaciónFormato de publicación de otros documentosLista de verificación

Statistics

Display statistics

A novel hybrid approach of gravitational search algorithm and decision tree for twitter spammer detection

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Average rating
 
   votes
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
 
Your vote was cast
Thank you for your feedback
Authors
Vives, Luis
Tuteja, Gurpreet Singh
Manideep, A. Sai
Jindal, Sonika
Sidhu, Navjot
Jindal, Richa
Bhatt, Abhishek
Issue Date
2022-05-01
Keywords
computational classification
decision tree
Gravitation
gravitational search algorithm
social communication
Twitter spammer detection

Metadata
Show full item record
Publisher
World Scientific
Journal
International Journal of Modern Physics C
URI
http://hdl.handle.net/10757/660274
DOI
10.1142/S0129183122500607
Additional Links
https://www.worldscientific.com/doi/10.1142/S0129183122500607
Abstract
With the increasing popularity of online social networking platforms, the amount of social data has grown exponentially. Social data analysis is essential as spamming activities and spammers are escalating over online social networking platforms. This paper focuses on spammer detection on the Twitter social networking platform. Although existing researchers have developed numerous machine learning methods to detect spammers, these methods are inefficient for appropriately detecting spammers on Twitter due to the imbalance of spam and nonspam data distribution, the involvement of diverse features and the applicability of data mechanisms by spammers to avoid their detection. This research work proposes a novel hybrid approach of the gravitational search algorithm and the decision tree (HGSDT) for detecting Twitter spammers. The individual decision tree (DT) algorithm is not able to address the challenges as it is unstable and ineffective for the higher level of favorable data for a particular attribute. The gravitational search algorithm (GSA) constructs the DTs with improved performance as the gravitational forces act as the information-transferring agents through mass agents. Moreover, the GSA is efficient in handling the data of higher dimensional search space. In the HGSDT approach, the construction of the DT and splitting of nodes are performed with the heuristic function and Newton's laws. The performance of the proposed HGSDT approach is determined for the Social Honeypot dataset and 1KS-10KN dataset by conducting three different experiments to analyze the impact of training data size, features and spammer ratio. The result of the first experiment shows the need of a higher proportion of training data size, the second experiment signifies the more importance of textual content-based features compared to the other feature categories and the third experiment indicates the requirement of balanced data to attain the effective performance of the proposed approach. The overall performance comparison indicates that the proposed HGSDT approach is superior to the incorporated machine learning methods of DT, support vector machine and back propagation neural network for detecting Twitter spammers.
Type
info:eu-repo/semantics/article
Rights
info:eu-repo/semantics/embargoedAccess
Language
eng
ISSN
01291831
ae974a485f413a2113503eed53cd6c53
10.1142/S0129183122500607
Scopus Count
Collections
Ingeniería de Sistemas de Información

entitlement

 

DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contact Us
Alicia
La Referencia
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.