• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   INICIO
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ciencias de la Computación
  • Ver ítem
  •   INICIO
  • Artículos científicos
  • Pregrado
  • Facultad de Ingeniería
  • Ciencias de la Computación
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todos los contenidosComunidades & ColeccionesTítuloAutorAsesorFecha PublicaciónFecha de envíoMateriaEsta colecciónTítuloAutorAsesorFecha PublicaciónFecha de envíoMateriaPerfiles de autorVer

Mi cuenta

AccederRegistro

Quick Guides

AcercaPolíticasPlantillas de tesis y trabajos de investigaciónFormato de publicación de tesis y trabajos de investigaciónFormato de publicación de otros documentosLista de verificación

Estadísticas

Mostrar estadísticas

Recurrent neural networks for deception detection in videos

  • CSV
  • RefMan
  • EndNote
  • BibTex
  • RefWorks
Average rating
 
   votes
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
 
Your vote was cast
Thank you for your feedback
Autor
Rodriguez-Meza, Bryan
Vargas-Lopez-Lavalle, Renzo
Ugarte, Willy
Fecha de publicación
2022-01-01
Palabras clave
Deception detection
Deep learning
Facial landmarks recognition
Recurrent neural networks
Video database

Metadatos
Mostrar el registro completo del ítem
Editorial
Springer Science and Business Media Deutschland GmbH
Journal
Communications in Computer and Information Science
URI
http://hdl.handle.net/10757/659825
DOI
10.1007/978-3-031-03884-6_29
Enlaces adicionales
https://link.springer.com/chapter/10.1007/978-3-031-03884-6_29
Resumen
Deception detection has always been of subject of interest. After all, determining if a person is telling the truth or not could be detrimental in many real-world cases. Current methods to discern deceptions require expensive equipment that need specialists to read and interpret them. In this article, we carry out an exhaustive comparison between 9 different facial landmark recognition based recurrent deep learning models trained on a recent man-made database used to determine lies, comparing them by accuracy and AUC. We also propose two new metrics that represent the validity of each prediction. The results of a 5-fold cross validation show that out of all the tested models, the Stacked GRU neural model has the highest AUC of.9853 and the highest accuracy of 93.69% between the trained models. Then, a comparison is done between other machine and deep learning methods and our proposed Stacked GRU architecture where the latter surpasses them in the AUC metric. These results indicate that we are not that far away from a future where deception detection could be accessible throughout computers or smart devices.
Tipo
info:eu-repo/semantics/article
Derechos
info:eu-repo/semantics/embargoedAccess
Idioma
eng
ISSN
18650929
EISSN
18650937
ae974a485f413a2113503eed53cd6c53
10.1007/978-3-031-03884-6_29
Scopus Count
Colecciones
Ciencias de la Computación

entitlement

 

DSpace software (copyright © 2002 - 2022)  DuraSpace
Quick Guide | Contacto
Alicia
La Referencia
Open Repository is a service operated by 
Atmire NV
 

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.