• Análisis predictivo para el cálculo de la valoración del fondo acumulado del afiliado en el Sistema Privado de Pensiones usando técnicas y herramientas de machine learning

      Armas Aguirre, Jimmy Alexander; Espinoza Ladera, Jhonatan Alfredo (Universidad Peruana de Ciencias Aplicadas (UPC)PE, 2020-07-01)
      El propósito del presente documento es el desarrollo del proyecto académico que tiene como objetivo plantear un modelo de análisis predictivo soportado por una plataforma tecnológica Cloud basada en técnicas de Machine Learning para pronosticar el fondo acumulado de un afiliado que aporte a un sistema privado de pensiones. Esto surge ante el desconocimiento sobre cómo se administran las finanzas personales en los fondos privados de pensiones representan un riesgo en el manejo del futuro de cada individuo. Esta ausencia de control en la administración del fondo de cada afiliado conlleva a no saber en todo momento a lo qué están expuestos. En la actualidad existen herramientas propias de las entidades administradoras de fondos de pensiones que permiten simular y calcular tanto el fondo como la pensión que recibirá un jubilado, sin embargo, lo que no ofrecen estas herramientas es la posibilidad de proyectar el fondo a partir de factores de crecimiento bajo criterios propios del afiliado que le otorguen la posibilidad de comprar cuál fondo voluntario de pensiones puede ser el más beneficioso al final de la vida laboral. La tecnología ha evolucionado y se aprecia grandes avances con respecto a la captura y almacenamiento de información. Una de estas tecnologías utiliza Cloud Computing, la cual ha crecido en grandes proporciones en diversas industrias y atraen la atención de comunidades de investigación debido a su potencial para implementar soluciones tecnológicas a la medida El desarrollo de este proyecto se llevará a cabo durante los ciclos académicos 2018-1 y 2018-2, realizando el análisis de tecnologías Cloud que soportan el modelo de análisis predictivo soportado por una plataforma tecnológica cloud basada en machine learning para determinar el fondo acumulado de un afiliado que aporte a un sistema privado de pensiones y el diseño del modelo tecnológico propuesto durante el ciclo 2018-1. La validación del modelo tecnológico mediante el desarrollo de la aplicación móvil, la documentación de los resultados y el plan de continuidad del proyecto en el ciclo 2018-2.
      Acceso abierto
    • Modelo de análisis predictivo para determinar clientes con tendencia a la deserción en bancos peruanos

      Herrera Trujillo, Emilio Antonio; Barrueta Meza, Renzo André; Castillo Villarreal, Edgar Jean Paul (Universidad Peruana de Ciencias Aplicadas (UPC)PE, 2018-12-06)
      En la actualidad, el rol que cumplen los bancos en la economía del país y el impacto que tienen en las diferentes clases sociales es cada vez más importante. Estos siempre han sido un mercado que históricamente ha recibido un gran número de quejas y reclamaciones. Es por ello que, un mal servicio por parte del proveedor, una deficiente calidad de los productos y un precio fuera de mercado son las principales razones por las que los clientes abandonan una entidad bancaria. Esta situación va aumentando cada vez más y los bancos muestran su preocupación por este problema intentando implementar modelos que hasta el momento no han logrado cumplir con los objetivos. Además, existe un elevado nivel de competencia que obliga a las entidades financieras a velar por la lealtad de sus clientes para intentar mantenerlos e incrementar su rentabilidad. Este proyecto propone un Modelo de Análisis Predictivo soportado con la herramienta SAP Predictive Analytics, con el fin de ayudar en la toma de decisiones para la retención o fidelización de los clientes potenciales con tendencia a la deserción en la entidad bancaria. Esta propuesta se realizó mediante la necesidad de los mismos de conocer la exactitud de deserción de sus clientes categorizados potenciales. Se desarrolló una interfaz web como canal entre el Modelo de Análisis Predictivo propuesto y la entidad bancaria, con el fin de mostrar el resultado obtenido por el modelo indicando la exactitud, en porcentaje, de los clientes con tendencia a desertar. Además, como Plan de continuidad se propone 2 proyectos en base a la escalabilidad del Modelo de análisis predictivo propuesto, apoyándonos en la información obtenida en la etapa de análisis del modelo mismo.
      Acceso abierto