• Application of glass and fan shells to a clay soil to increase its mechanical properties

      Jara, Heiner Lopez; Barrionuevo, Brandon Bravo; Díaz, Carlos Fernández (IOP Publishing Ltd, 2021-02-05)
      Improving the mechanical properties of a clayey soil is one of the best options to avoid future structural failures in buildings and is cheaper than replacing all the material. Therefore, this article proposes the use of recycled glass and fan shells as reinforcement materials. This article presents an experimental study to evaluate the mechanical properties of a pure and mixed soil. The clay soil was mixed with 7% of glass (PV) and with 3%, 6%, 10%, 12% and 15% of Fan Shells (PCA) duly crushed and passed through sieve #100. Tests of sieve granulometry, sedimentation granulometry, Atterberg limits, modified proctor and drained consolidated direct cut were performed. This allowed comparing all the data obtained and defining the optimal percentage of the mixture in which the clay improves its mechanical properties. According to the tests carried out, the proportion that has 7% glass and 6% Fan Shells has better results because there is an improvement in its dry density from 1,784 g / cm3 to 1,847 g / cm3, its moisture content increases from 9.4% to 12.1%. In addition, its friction angle improves from 28.9 °to 32 °and cohesion from 0.05 kg / cm2 to 0.1 kg / cm2. These results verify that the properties of the clay soil are improved.
      Acceso abierto
    • Concrete cracking control in underwater marine structures using basalt fiber

      Quispe, C.; Lino, D.; Rodríguez, J.; Hinostroza, A. (IOP Publishing Ltd, 2021-02-05)
      The construction of coastal ports requires the use of materials that meet the demands of the marine environment, to prevent underwater concrete structures from cracking and spalling easily; basalt fiber is used to delay the expansion of concrete and prevent the formation of cracks. This research studies the behavior of concrete for prefabricated piles with Portland Cement Type I and basalt fibers added in 0.1%, 0.3% and 0.6%; the results indicate that the fiber is suitable for concrete, the slump decreases, the compressive strength increases for specimens cured in tap water and sea water, the relationship between resistances does not vary, and the depth of carbonation decreases.
      Acceso abierto
    • Sustainable urban pavement for cities affected by El Niño using porous concrete

      Aguirre, B.; Anchiraico, M.; Rodríguez, J.; García, F. (IOP Publishing Ltd., 2021-02-05)
      The El Niño phenomenon is caused by the change in atmospheric pressures, which produce the accumulation of hot surface waters on the eastern flank of the Pacific Ocean; causing intense rainfall that runs over the surface affecting the urban drainage of the city due to the lack of a permeable pavement; porous concrete allows infiltration of surface water runoff through its pores. The present investigation evaluates porous concrete in the range of w/c relationships of 0.30 and 0.32; the results indicate that the compressive strength, flexural strength and permeability coefficient increase; and that the surface runoff, cost, water footprint and carbon footprint are lower than conventional concrete.
      Acceso abierto
    • Use of textile waste as an addition in the elaboration of an ecological concrete block

      Anglade, J.; Benavente, E.; Rodríguez, J.; Hinostroza, A. (IOP Publishing Ltd, 2021-02-05)
      The textile industry has grown significantly in recent years, reaching a global fiber production of 53 million tons which 12 % are recycled; Construction sector has been using more and more recycled materials from different industrial sources, to apply them in their constructions and to reduce CO2 emissions and final energy consumption. The present study aims to study the behavior of concrete blocks of fć= 210 kg/cm2 adding polyester textile waste with 3 %, 6 %, 9 %, 12 % and 15 %; void content, compressive strength and thermal conductivity decrease, and water absorption, acoustic insulation and unit price increase by 3 %, 34 % and 16 % compared to conventional concrete block.
      Acceso abierto