Diseño e implementación de un sistema de planificación, programación y control de la producción de planchas en una empresa metalmecánica aplicando los principios de la Guía de los Fundamentos para la Dirección de Proyectos (PMBOK)

TESIS
Para optar el título profesional de: Ingeniero Industrial

AUTORES
Andrade Ortiz, Cristian Daniel (0000-0002-5093-7817)
Salinas Roncal, Wilfredo Jair (0000-0002-1807-3238)

ASESOR DE TESIS
Shinno Huamaní, Miguel (0000-0002-1732-8788)

Lima, 31 de Enero de 2018
RESUMEN

El proyecto consiste en el diseño e implementación de un proceso de planificación, programación y control de la producción de planchas en una pequeña empresa metalmecánica. Este surgió a partir de la evidencia de las ventas perdidas presentadas en el año 2015 que representan un costo de oportunidad para la empresa. Con la implementación del proceso, el principal objetivo es reducir las ventas perdidas obteniendo impactos económicos que sean relevantes para la empresa. Para llevarlo a cabo se ha aplicado la Gestión de Proyectos empleando la Guía de los Fundamentos para la Dirección de Proyectos (PMBOK).

El presente documento presenta el marco teórico en el cual se abordan los temas de gestión de procesos, gestión de proyectos y la planificación, programación y control de la producción. Tras ello, se desarrolla el plan del proyecto donde se definen las áreas de conocimiento a utilizar y las herramientas necesarias para elaborar cada una. Una vez realizado el plan, se procede a elaborar el diseño del proceso de planificación, programación y control, y la finalidad que este tendrá dentro del método de trabajo de la empresa. Luego de haber procedido con la implementación, se detalla cómo se llevó a cabo, iniciando con las capacitaciones al personal acerca del proceso y la ejecución del mismo, entre otros; asimismo, se evalúan los resultados obtenidos con este a través de indicadores, y los impactos económicos generados con el proyecto. Finalmente, se presentan las conclusiones y recomendaciones conseguidas tras el desarrollo del mismo, procurando siempre su continuidad.

Palabras clave: Planificación, PYME, proyectos, PMBOK, metalmecánica
ABSTRACT

The project consists in the design and implementation of a process of planning, programming and control of plate production in a small metal-mechanic company. This arose from the evidence of lost sales presented in 2015 that represent an opportunity cost for the company. With the implementation of the process, the main objective is to reduce lost sales by obtaining economic impacts that are relevant to the company. In order to carry it out, Project Management has been applied using the Fundamental Guide for Project Management (PMBOK).

This document presents the theoretical framework in which the topics of process management, project management and planning, programming and production control are addressed. After that, the project plan is developed where the areas of knowledge to be used and the tools necessary to elaborate each one are defined. Once the plan has been made, the design of the planning, programming and control process, and the purpose it will have within the work method of the company, will be elaborated. After proceeding with the implementation, it details how it was carried out, starting with the trainings to the personnel about the process and the execution of the same, among others; likewise, the results obtained with this are evaluated through indicators, and the economic impacts generated with the project. Finally, the conclusions and recommendations obtained after the development thereof are presented, always seeking their continuity.

Keywords: Planning, SME, project, PMBOK, metalworking
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLA DE CONTENIDO</td>
<td>III</td>
</tr>
<tr>
<td>INDICE DE TABLAS</td>
<td>VI</td>
</tr>
<tr>
<td>INDICE DE FIGURAS</td>
<td>X</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>CAPÍTULO 1: MARCO TEÓRICO</td>
<td>2</td>
</tr>
<tr>
<td>1.1. Estado del arte</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Normativa</td>
<td>17</td>
</tr>
<tr>
<td>1.3. Conceptos generales</td>
<td>25</td>
</tr>
<tr>
<td>1.3.1. Programación y control</td>
<td>25</td>
</tr>
<tr>
<td>1.3.2. Gestión de proyectos</td>
<td>27</td>
</tr>
<tr>
<td>1.3.3. Gestión de procesos</td>
<td>28</td>
</tr>
<tr>
<td>1.4. Casos de éxito</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1. Plan óptimo de producción en una planta embotelladora de gaseosas</td>
<td>29</td>
</tr>
<tr>
<td>1.4.2. Procedimiento para la programación y control de la producción de una pequeña empresa</td>
<td>30</td>
</tr>
<tr>
<td>1.4.3. Programación de operaciones para el llenado de tolvas dosificadoras en una empresa de concentrados</td>
<td>31</td>
</tr>
<tr>
<td>1.4.4. Modelo de planificación de producción para un sistema multiproducto con múltiples líneas de producción</td>
<td>31</td>
</tr>
<tr>
<td>CAPÍTULO 2 : PLAN DEL PROYECTO</td>
<td>33</td>
</tr>
<tr>
<td>2.1. Información de la empresa</td>
<td>34</td>
</tr>
<tr>
<td>2.1.1. Datos generales</td>
<td>34</td>
</tr>
<tr>
<td>2.1.2. Estructura de Producción</td>
<td>35</td>
</tr>
<tr>
<td>2.2. Diagnóstico</td>
<td>41</td>
</tr>
<tr>
<td>2.2.1. Análisis de las Familias de Productos</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2. Análisis de la Demanda</td>
<td>44</td>
</tr>
<tr>
<td>2.2.3. Productos no procesados</td>
<td>45</td>
</tr>
</tbody>
</table>
Capítulo 2: Análisis de Problemas y Gestión del Alcance

2.2.4. Problema
2.2.5. Impacto del problema
2.2.6. Análisis de causas

2.3. Identificación de Intereses

2.3.1. Registro de interesados
2.3.2. Matriz de abordaje

2.4. Gestión del Alcance

2.4.1. Requisitos
2.4.2. Objetivo
2.4.3. Alcance
2.4.4. Restricciones
2.4.5. EDT

2.5. Gestión del Tiempo

2.5.1. Actividades del proyecto
2.5.2. Estimación de recursos
2.5.3. Estimación de la duración
2.5.4. Cronograma del Proyecto

2.6. Gestión de Recursos Humanos

2.6.1. Organigrama
2.6.2. Equipo del proyecto
2.6.3. Matriz de Asignación de Responsabilidades

2.7. Gestión de Riesgos

2.7.1. Identificación de Riesgos
2.7.2. Análisis Cualitativo de Riesgos

2.8. Presupuesto

2.9. Gestión de Comunicaciones

2.9.1. Plan de Comunicaciones

CAPÍTULO 3: DISEÑO E IMPLEMENTACIÓN

3.1. Diseño del proceso de planificación, programación y control
3.1.1. Formulación del proceso
3.2. Plan de implementación del proceso de planificación, programación y control
3.2.1. EDT Fase de Ejecución... 120
3.2.2. Actividades programadas.. 120
3.2.3. Cronograma fase de Ejecución del Proyecto................................ 129
3.2.4. Riesgos identificados ... 130
3.2.5. Matriz de riesgos ... 130
3.2.6. Resumen de recursos .. 135
3.2.7. Costos estimados de la ejecución ... 135
3.3. Capacitación .. 136
3.4. Herramienta soporte de programación y control 143
3.5. Cumplimiento de actividades programadas 150

CAPÍTULO 4: RESULTADOS Y VALIDACIÓN .. 154
4.1. Desarrollo de la implementación del proyecto 155
 4.1.1. Actividades realizadas .. 155
 4.1.2. Riesgos ocurridos en la Fase de Implementación 163
 4.1.3. Costos reales de la ejecución ... 164
 4.1.4. Costos del proyecto .. 165
4.2. Validación ... 167
 4.2.1. Impactos ... 167
 4.2.2. Objetivos ... 171
 4.2.3. Resumen de Indicadores: Segundo Semestre 2016 180
 4.2.4 Costos involucrados del proceso .. 185
 4.2.5. Cumplimiento de Requisitos ... 187
 4.2.6. Acta de Constitución del Proyecto....................................... 188
 4.2.7. Carta de validación del proyecto ... 189

CAPÍTULO 5: CONCLUSIONES Y RECOMENDACIONES 191
5.1. Conclusiones ... 192
5.2. Recomendaciones .. 196

6. BIBLIOGRAFÍA ... 198

ANEXOS .. 204
INDICE DE TABLAS

Tabla 1: Serie de espesores nominales de láminas y bobinas de acero al carbono laminados en frío y masas correspondientes...18
Tabla 2: Tolerancias en el espesor en láminas o en bobinas...20
Tabla 3: Tolerancias en el ancho de las láminas no reescuadradas..20
Tabla 4: Tolerancias en la longitud de las láminas no reescuadradas.....................................20
Tabla 5: Serie de espesores nominales de láminas y bobinas de acero al carbono en caliente y sus masas correspondientes...21
Tabla 6: Tolerancia en el espesor en láminas cortadas o en bobinas....................................22
Tabla 7: Tolerancias en el ancho de las láminas no reescuadradas..22
Tabla 8: Tolerancias en la longitud de las láminas no reescuadradas.....................................22
Tabla 9: Datos de la empresa ..34
Tabla 10: Ventas por tipo de productos según clasificación..41
Tabla 11: Clasificación ABC ..42
Tabla 12: Demanda del año 2015 ..44
Tabla 13: Identificación del tipo de demanda ...45
Tabla 14: Planchas galvanizadas no procesadas...46
Tabla 15: Planchas laminadas al caliente no procesadas...46
Tabla 16: Planchas estriadas no procesadas ...46
Tabla 17: Planchas al frío no procesadas ..46
Tabla 18: Tubos de acero inoxidable no procesados ..46
Tabla 19: Tubos cuadrados negros no procesados ...46
Tabla 20: Tubos cuadrados electrosoldados no procesados ...47
Tabla 21: Tubos electrosoldados rectangulares no procesados ..47
Tabla 22: Tubos negros rectangulares no procesados ...47
Tabla 23: Tubos redondos negros no procesados ...47
Tabla 24: Tubos galvanizados estructurales no procesados ...47
Tabla 25: Tubos redondos estándares no procesados ..47
Tabla 26: Tubos cédula no procesados ... 48
Tabla 27: Tubos redondos electrosoldados no procesados .. 48
Tabla 28: Matriz de selección del problema principal .. 49
Tabla 29: Escala de impacto .. 49
Tabla 30: Ventas 2015 en familia de planchas .. 52
Tabla 31: Análisis de criticidad de las causas raíz ... 55
Tabla 32: Frecuencia ... 55
Tabla 33: Impacto ... 55
Tabla 34: Clasificación de las causas raíces .. 56
Tabla 35: Registro de Interesados .. 60
Tabla 36: Matriz de abordaje ... 62
Tabla 37: Matriz de trazabilidad de requisitos ... 64
Tabla 38: Restricciones del proyecto ... 65
Tabla 39: Lista de Paquetes de trabajo del proyecto ... 67
Tabla 40: Actividades del proyecto .. 68
Tabla 41: Actividades del proyecto con recursos asignados 71
Tabla 42: Duración estimada de las actividades del proyecto 75
Tabla 43: Equipo del proyecto .. 81
Tabla 44: Leyenda de responsabilidades .. 82
Tabla 45: Matriz de asignación de responsabilidades ... 83
Tabla 46: Riesgos del proyecto .. 84
Tabla 47: Matriz de probabilidad e impacto .. 85
Tabla 48: Matriz de Riesgos del proyecto ... 86
Tabla 49: Calificación del riesgo .. 89
Tabla 50: Presupuesto del proyecto .. 91
Tabla 51: Plan de comunicaciones del proyecto ... 93
Tabla 52: Demanda histórica 2015 - Familia de planchas ... 104
Tabla 53: Demanda real vs proyectado en el año 2015 - Familia de planchas 104
Tabla 54: Demanda real vs proyectado en el año 2016 - Familia de planchas 106
Tabla 55: Requerimientos para los pedidos con corte galvanizado 109
Tabla 56: Requerimientos para los pedidos con corte al frío 110
Tabla 57: Requerimientos para los pedidos con corte al caliente.. 110
Tabla 58: Requerimientos para los pedidos con corte estriado.. 110
Tabla 59: Plan agregado con fuerza de trabajo constante... 111
Tabla 60: PMP Planchas Galvanizadas - Agosto... 112
Tabla 61: PMP para plancha galvanizada de medidas 400x600 mm................................ 112
Tabla 62: PMP para plancha galvanizada de medidas 600x800 mm................................. 112
Tabla 63: PMP para plancha galvanizada de medidas 1200x1200 mm............................. 113
Tabla 64: PMP para plancha galvanizada de medidas 1200x600 mm.............................. 113
Tabla 65: Matriz de Kraljic – Fierrosol S.A.C... 116
Tabla 66: Control de inventarios – Registro final.. 116
Tabla 67: Lista de actividades de la fase de ejecución... 121
Tabla 68: Riesgos de la fase de ejecución.. 130
Tabla 69: Matriz de Riesgos de la fase de ejecución... 131
Tabla 70: Resumen de recursos en la etapa de ejecución... 135
Tabla 71: Costos estimados de la fase de ejecución... 136
Tabla 72: Recursos consumidos actividad N° 01... 155
Tabla 73: Duración de la actividad N° 01.. 155
Tabla 74: Recursos consumidos actividad N° 02... 156
Tabla 75: Duración de la actividad N° 02.. 156
Tabla 76: Recursos consumidos actividad N° 03 .. 158
Tabla 77: Duración de la actividad N° 03.. 158
Tabla 78: Recursos consumidos de la actividad N° 04... 159
Tabla 79: Duración de la actividad N° 04.. 159
Tabla 80: Recursos consumidos de la actividad N° 05... 159
Tabla 81: Duración de la actividad N° 05.. 159
Tabla 82: Recursos consumidos de la actividad N° 06... 160
Tabla 83: Duración de la actividad N° 06.. 160
Tabla 84: Actividades dadas para mejorar la capacitación.. 161
Tabla 85: Recursos consumidos de la actividad N° 07... 162
Tabla 86: Duración de la actividad N° 07.. 162
Tabla 87: Recursos consumidos de la actividad N° 08... 162
Tabla 88: Duración de la actividad N° 08.. 163
Tabla 89: Resumen del primer riesgo ocurrido.. 164
Tabla 90: Resumen del segundo riesgo ocurrido... 164
Tabla 91: Costos de la implementación.. 165
Tabla 92: Costos reales del proyecto por actividad ... 166
Tabla 93: Costos comparativos - Año 2015... 186
Tabla 94: Costos comparativos - Año 2016... 186
Tabla 95: Matriz de cumplimiento de requisitos .. 187
INDICE DE FIGURAS

Figura 1: Matriz de productos y procesos para los procesos de manufactura .. 35
Figura 2: Flujo de actividades para el sistema de producción bajo pedido .. 37
Figura 3: Flujo de actividades de productos para puesta en venta.. 39
Figura 4: Clasificación ABC de las familias... 43
Figura 5: Ventas y ventas perdidas del año 2015 en plancha galvanizada... 50
Figura 6: Ventas y ventas perdidas del año 2015 en plancha laminada al caliente 51
Figura 7: Ventas y ventas perdidas del año 2015 en plancha estriada.. 51
Figura 8: Ventas y ventas perdidas del año 2015 en plancha al frío... 52
Figura 9: Diagrama de Ishikawa.. 54
Figura 10: Diagrama de Pareto .. 56
Figura 11: Árbol de causas y efectos .. 57
Figura 12: Estructura de Desglose de Trabajo del proyecto de implementación 66
Figura 13: Diagrama de Gantt del proyecto de implementación .. 78
Figura 14: Organigrama de la empresa Fierrosol S.A.C.. 80
Figura 15: Mapa de procesos actual – Fierrosol S.A.C ... 96
Figura 16: Mapa de procesos propuesto – Fierrosol S.A.C ... 97
Figura 17: Esquema de relación entre procesos propuestos – Fierrosol S.A.C 98
Figura 18: Flujo de información entre procesos .. 99
Figura 19: Flujo propuesto... 101
Figura 20: Flujo del Subproceso de Programación .. 102
Figura 21: Demanda del año 2015 ... 106
Figura 22: Tendencia de la Demanda del año 2016 .. 108
Figura 23: Matriz de Kraljic – Fierrosol S.A.C .. 114
Figura 24: Control de inventarios ... 117
Figura 26: Secuencia de actividades – Etapa de Diseño .. 122
Figura 27: Secuencia de actividades – Etapa Piloto .. 125
Figura 28: Secuencia de actividades – Etapa de Implementación ... 128
Figura 29: Cronograma de la fase de Ejecución ... 129
Figura 30: Hoja de Programación A .. 144
Figura 31: Hoja de Programación B .. 145
Figura 32: Hoja de Orden de Fabricación .. 146
Figura 33: Hoja de Orden de Compra .. 147
Figura 34: Hoja de Inventarios ... 148
Figura 35: Indicador de Disponibilidad de Materiales .. 149
Figura 36: Indicador de Nivel de Servicio ... 150
Figura 37: Cumplimiento de actividades – Etapa de Diseño ... 151
Figura 38: Cumplimiento de actividades – Etapa Piloto .. 151
Figura 39: Cumplimiento de actividades – Etapa de Implementación 152
Figura 40: Evolución de la Demanda 2015 vs 2016 ... 167
Figura 41: Costo de Oportunidad – Prueba Piloto .. 168
Figura 42: Pedidos cancelados – Prueba Piloto ... 169
Figura 43: Nivel crítico de inventarios – Prueba Piloto ... 169
Figura 44: Resultados de la capacitación – Prueba Piloto ... 170
Figura 45: Nivel de Servicio – Prueba Piloto .. 171
Figura 46: Proyección del costo de oportunidad – Segundo Semestre 172
Figura 47: Costo de Oportunidad - Agosto ... 173
Figura 48: Nivel de Servicio - Agosto .. 174
Figura 49: Costo de Oportunidad - Setiembre ... 174
Figura 50: Nivel de Servicio - Setiembre ... 175
Figura 51: Costo de Oportunidad - Octubre ... 176
Figura 52: Nivel de Servicio - Octubre .. 176
Figura 53: Costo de Oportunidad - Noviembre ... 177
Figura 54: Nivel de Servicio - Noviembre ... 178
Figura 55: Costo de Oportunidad - Diciembre ... 178
Figura 56: Nivel de Servicio - Diciembre ... 179
Figura 57: Costo de Oportunidad – Segundo Semestre 2016 ... 180
Figura 58: Nivel de Servicio – Segundo Semestre 2016 ... 181
Figura 59: Productividad – Segundo Semestre 2016 .. 182
Figura 60: Capacidad Utilizada – Segundo Semestre 2016.. 183
Figura 61: Nivel de cumplimiento de abastecimiento – Segundo Semestre 2016.................. 184
Figura 62: Acta de Constitución del Proyecto .. 188
Figura 63: Carta de Levantamiento del Proyecto .. 189
INTRODUCCIÓN

Fierrosol S.A.C. es una empresa metalmecánica en la que la toma de decisiones se dan empíricamente; decisiones que a largo plazo traen consecuencias negativas para la empresa.

Durante el año 2015, se evidenciaron ventas perdidas que representan un costo de oportunidad en la empresa. Esto motivó el interés en el dueño de solicitar la implementación de un proceso de planificación, programación y control de producción que permita al área de Operaciones trabajar ordenadamente y reducir el nivel de ventas perdidas.

El presente documento se centra en el diseño del proceso y su implementación en la empresa, y para ello se han elaborado 5 capítulos.

En el primer capítulo se recopilan y analizan las experiencias relatadas por expertos en la materia. En el segundo, se elabora el plan del proyecto donde se detallan las actividades a realizar hasta finalizarlo, dentro de un tiempo base establecido. Asimismo, en el tercer capítulo se diseña el proceso obteniendo los flujos del mismo y los formatos que apoyarán a los responsables de la planificación y programación a ejecutar las tareas de fabricación con mayor sencillez; y en el cuarto capítulo se evalúan y demuestran los resultados obtenidos con el proceso implementado. Finalmente, en el último capítulo serán descritas las conclusiones y recomendaciones obtenidas con el desarrollo de la tesis.
CAPÍTULO 1: MARCO TEÓRICO

En el primer capítulo del proyecto de implementación se abordará el estado del arte, el cual nos da una perspectiva general de los avances y posiciones que se han dado y tomado en el campo de la gestión de procesos, proyectos y planificación, programación y control de la producción. Busca además dar una visión de lo que abordará principalmente el proyecto. Asimismo, se menciona la normativa específica utilizada para planchas de acero en el Perú, y a su vez se presenta el contenido incluido en normas como esta. Por otro lado, se detallan algunos conceptos generales asociados a los campos mencionados anteriormente y finalmente, cuatro casos de éxito tras la implementación del proceso que se tiene por objetivo final que abrirán paso al siguiente capítulo.
1.1. Estado del arte

Lemanska y Okreglicka (2015) mencionan que un proceso es un orden específico de actividades de trabajo durante el tiempo, con un propósito que tiene un principio y fin definidos de entradas y salidas. Así, para Lemanska y Okreglicka (2015) la gestión de procesos se define como los esfuerzos en la empresa para analizar y mejorar las actividades fundamentales de la organización como la fabricación, comercialización, entre otros; y representa a su vez un enfoque integral para poner en práctica los objetivos de la empresa que consiste principalmente en aumentar la eficacia de dichas actividades.

Para Nadarajah y Latifah Syed Abdul Kadir (2014) el objetivo principal de la gestión de procesos del negocio, es asegurar que los procesos clave que afectan directamente a los clientes sean eficientes y eficaces. Lemanska y Okreglicka (2015) refuerzan lo mencionado anteriormente sosteniendo que la identificación de los procesos clave permite una gestión más eficaz en la organización, y se convierte en éxito para la misma; ya que, estos poseen un enfoque estructurado y alinean sus resultados para alcanzar los objetivos del negocio, y principalmente la asignación de recursos para su mejora que pueden afectar el éxito mencionado.

Según Vom Brocke y otros (2015) la gestión de procesos del negocio en las últimas décadas ha tenido una gran importancia y por ello, actualmente muchas organizaciones se enfocan en la identificación y documentación de dichos procesos; así como el establecimiento de los indicadores clave de rendimiento para la medición y control del proceso. Nadarajah y Latifah Syed Abdul Kadir (2014) indican que la gestión de procesos del negocio fue impulsado por principios como la gestión de la calidad total y la reingeniería de procesos de negocio; y que el marco de la gestión de procesos por ello, implica la estrategia, diseño organizacional y coordinación de la cadena de valor, gestión del rendimiento y gestión del conocimiento. Por ello, Nadarajah y Latifah Syed Abdul Kadir (2014) sostienen que fue en la década de 1990 donde se reconoció que no todos los recursos pueden crear valor y que aquellos que sí lo generaban, eran reconocidos como capacidades de la organización. Estos autores mencionan además que estas capacidades generan como resultado ventajas competitivas, que motivaron posteriormente el estudio de la gestión de procesos como un recurso que se pueda transformar en una capacidad que genere una ventaja competitiva.
Por ello, Sanders y Linderman (2014) sostienen que con el fin de seguir siendo competitivas, las organizaciones se ven obligadas a cambiar para alcanzar el nivel necesario de ajuste y así mejorar su rendimiento; por ello, las presiones competitivas residen en lugares estratégicos que requieren diferentes organizaciones y estas elijan procesos que son más efectivos en ese contexto. Los autores indican también que a medida que aumenta la competencia, los aspectos de la gestión de procesos se vuelven aún más necesarios junto con el concepto de innovación que permite a las organizaciones ir más allá del aprendizaje a partir de la repetición, corrección de defectos y un deseo de reducir la variación del proceso.

Sin embargo, Vom Brocke y Schmiedel (2015) indican que existen muchas organizaciones que reportan haber tenido fracaso en este resultado esperado por la falta de conocimiento sobre cómo abordar la gestión de procesos del negocio en diferentes contextos. Los autores mencionan que existen factores contextuales, siendo los más estudiados, la incertidumbre de tareas, el tamaño de la organización y los factores ambientales. Así, Vom Brocke y Schmiedel (2015) mencionan que el primer factor implica la transferencia de conocimiento entre los integrantes de los procesos de la organización así como también un juicio humano; por otro lado, el segundo factor resalta la importancia de conocer el alcance de la gestión de procesos y es importante no solo para comprenderlo y optimizar el proceso interno, sino también para controlar los procesos que involucran al cliente o incluso a la cadena de suministro. Finalmente, los autores mencionan que el factor ambiental, el cual es considerado como externo, posee entornos cambiantes que aumentan la necesidad de poseer capacidades dinámicas que son definidas como la capacidad de la organización para crear, ampliar o modificar sus recursos actuales.

Según Nadarajah y Latifah Syed Abdul Kadir (2015) la teoría de la capacidad dinámica surgió cuando se reconoció que tanto las condiciones internas como externas del ambiente son extremadamente volátiles y que necesitan una ágil gestión; de esta manera, la capacidad dinámica determina el impacto de la gestión de procesos contra la ventaja competitiva sostenible mencionada anteriormente.

Por ello, Lemanska y Okreglicka (2015) hicieron una investigación en 138 organizaciones entre pequeñas, medianas y grandes empresas en Polonia, de las cuales el 69% era pequeñas; y el objetivo de esta investigación era saber cómo se estaba orientando la gestión de procesos en este
tipo de empresas y conocer con ello sus limitaciones. Tras la investigación y evaluación de resultados, se demostró que el nivel de conocimiento de la gestión de procesos de los empresarios crece con el aumento del tamaño de la empresa y la mejora de su situación financiera; así como también, solo el 8.6% de las empresas conoce la estrategia de abajo hacia arriba en la identificación y creación de procesos de negocio. Finalmente, los autores confirmaron que existen dificultades en la identificación de procesos por una inadecuada definición de estos. Se deduce entonces que para poder lograr una gestión de procesos adecuada y lograr una ventaja competitiva en la organización que la conduzca al éxito, es necesario conocer y definir adecuadamente los procesos clave a estudiar.

De esta manera, en otra investigación dada por Vom Brocke y Sinnl (2011) sostienen que a pesar que la mayoría de referencias respecto a la cultura en la gestión de procesos de negocio están referidas a la cultura de la organización, algunos reconocen la cultura del trabajo en equipo como factores influyentes en él. Los autores indican que muchas veces esto se debe a una falta de identificación del trabajador sobre la necesidad de un proceso de cambio o un pensamiento general de proceso y por ello, la cultura se convierte en un factor crítico en relación con la gestión de procesos de negocio, ya que se identifican barreras culturales como la resistencia al cambio y la falta de comprensión de los procesos. Margherita (2014) indica que un grupo común todavía carece de lo que la gestión de procesos de negocio realmente implica; y la definición poco clara de las habilidades y conocimientos especializados obstaculizan el verdadero potencial de este.

Por otro lado, nuevamente Vom Brocke y otros (2014) mencionan que los factores críticos de éxito mencionados anteriormente no reflejan totalmente los principios esenciales de la gestión de procesos de negocio. Por ello proponen diez principios que permiten lograr la práctica exitosa de la gestión de procesos, mediante el apoyo del juicio experto y grupos de enfoque. Los autores indican que entre estos principios se encuentran: el principio de sensibilidad al contexto, que sostiene que la gestión de procesos de negocio debe considerar el entorno de la organización en donde se está llevando a cabo; el principio de la continuidad, sostiene que la gestión de procesos de negocio debe ser permanente para que facilite ganancias continuas en eficiencia y eficacia; el principio de habilitación, sostiene que las empresas antes de invertir en herramientas o consultores deben conocer si tienen la capacidad de administrarlas; principio del holismo,
sostiene que la gestión de procesos de negocio no debe tener enfoques aislados en áreas específica de una organización; principio de institucionalización, exige la incorporación de la gestión de procesos en la estructura organizativa, introducción de roles y responsabilidades formales; el principio de participación, el cual sostiene que todos los interesados que se ven afectados por la gestión de procesos deben estar involucrados; el principio de entendimiento conjunto, sostiene que se debe emplear un mecanismo para introducir y mantener un lenguaje común que permita a los interesados ver y analizar los sistemas de la organización; el principio de finalidad, sostiene que se debe indicar el requisito de la gestión de procesos de negocio para alinearse con la misión y objetivos estratégicos; el principio de la simplicidad, sugiere que la cantidad de recursos invertidos en la gestión de procesos deben ser económicos; y finalmente, el principio de apropiación de la tecnología sostiene que se debe hacer un uso oportuno de la tecnología, en particular de TI (tecnologías de la información).

A pesar de que existen principios establecidos para una exitosa gestión de procesos, Margherita (2014) sostiene que la implementación de una organización basada en procesos es una transición a gran escala que puede ser particularmente difícil, ya que implica a toda la organización y requiere cambios fundamentales en suposiciones, creencias y valores con la necesidad de alinearse al estilo de gestión, métricas de rendimiento, prácticas de las personas y cultura organizacional.

Así, Storch y otros (2013) indican que las etapas para la implementación de la gestión de procesos son el diagnóstico, el análisis y rediseño de procesos; y junto a ello la medición del rendimiento que sirve como un medio para cuantificar la eficiencia y la eficacia del proceso. Los autores sostienen que la relación entre indicadores de rendimiento y los procesos es el factor clave; por ello se cree que la medición del rendimiento significa una nueva forma de madurez de acuerdo con los modelos aplicados para proporcionar un análisis comparativo.

Cichos y Aurich (2015) sostienen que existen procesos dentro del marco de fabricación como el proceso de programación y control de la producción, que tiene como finalidad determinar las actividades de fabricación diaria, mensual y anual que se desarrollarán en la empresa a través del diseño de un plan de producción. De esta manera, según Soares y otros (2014), la necesidad de las empresas por programar actividades a través de los períodos de tiempo mencionados, se debe
a que dichas actividades con el transcurso del tiempo se han vuelto más rigurosas para cualquier tipo de empresa, y el proceso debe estar pendiente de gestionar correctamente los factores de demanda, costos de operación, inventarios, entre otros.

Por ello, para Soares y otros (2014) la necesidad de planificar y controlar actividades de fabricación en las empresas, generó desde la década del año 1980, la tendencia a aplicar softwares ya que resultaba una ventaja competitiva respecto a las demás empresas; y en la década del año 1990, surgieron sistemas avanzados como el APS (Advanced Programming System), que son utilizados para crear el plan de producción optimo considerando la disponibilidad de insumos y materias primas, capacidad de máquinas y fuerza laboral, costos, ventas, inventarios y la demanda.

Phanden y otros (2011) mencionan que la planificación y programación de procesos son las dos tareas más importantes en un sistema de manufactura. Mencionan además que ambos implican la asignación de recursos y están muy relacionados entre sí; se llevan a cabo por separado y se dan dos fases secuenciales: el primero genera planes de proceso, donde se especifica materiales y componentes necesario para la fabricación del producto final; y el segundo asigna una tarea específica a una máquina específica con el fin de satisfacer un rendimiento dado.

Asimismo, como se mencionó anteriormente, el proceso de programación y control está ligado a la gestión de los factores de la demanda. Esta presenta según Cichos y Aurich (2015) una variabilidad constante y requiere cambios de ingeniería, la cual implica una reconfiguración de los recursos, la adición, sustitución o supresión de equipos y/o cambios en la interacción de recursos. Estas actividades que son generadas naturalmente por necesidades y que pueden ser controladas por la programación y control, deben procurar además ser sostenibles. Según el Departamento de Comercio de Estados Unidos, mencionado por Giret y otros (2015), la fabricación sostenible se define como:

“La creación de productos manufacturados que usan procesos que minimizan los impactos ambientales negativos, conserven la energía y recursos naturales, sea seguro para los empleados, comunidades y consumidores, y son económicamente sonados”.
De esta manera, se entiende que no solo es necesario planificar y controlar las actividades que permitan maximizar el rendimiento de la empresa; sino además, verificar que estas se encuentren en un contexto que permita la sostenibilidad durante la fabricación.

Para Giret y otros (2015) una de las estrategias más importantes para mejorar la sostenibilidad de la fabricación es reducir la energía consumida durante la fase de fabricación, por ello, un sistema de programación y control tiene un efecto considerable en el consumo de energía y el costo asociado; por ello, la sostenibilidad en los sistemas de fabricación hoy en día se vuelve más importante principalmente por aspectos ambientales, la disminución de recursos no renovables, legislaciones estrictas, entre otros. Lograr una fabricación sostenible actualmente no es tan sencillo, ya que como mencionan Giret y otros (2015) muchos sistemas están diseñados para que produzcan tanto como sea posible y se presta poca atención a la forma de adaptarlos a las necesidades reales.

Se observa entonces que para alcanzar una sostenibilidad en la fabricación, la programación y control de la producción tiene un papel importante principalmente en la consideración de la capacidad real vs la necesidad real.

Phanden y otros (2011) indican que muchos planificadores de procesos actualmente suponen una capacidad ilimitada de recursos que están siempre disponibles en venta; de esta manera, el planificador planea para los recursos alternativos más recomendados y esto conlleva que se planifique priorizando aquellos recursos deseables repetidamente. Asimismo, los autores sostienen que en el enfoque convencional de manufactura, los planes de proceso fijos restringen la programación a solo una operación por máquina, y así el uso de posibles de máquinas alternativas es ignorado. Por ello, Soares y otros (2014) resaltaron la importancia del Advanced Programming System (APS) mencionado inicialmente, por ser una combinación de la Planificación de Requerimiento de Materiales (MRP) y la Planificación de los Requerimientos de Capacidad (CRP), ya que sí considera una capacidad finita, y para su implementación es necesaria la inversión en software, hardware, capacitación, mantenimiento del sistema y cambios en la organización. Se entiende entonces que se requiere una inversión mínima para poder acceder a este tipo de sistema; y además, se pretende reflexionar sobre la importancia de conocer la capacidad real durante la programación y control de la producción.
Por otro lado, el conocimiento de la capacidad disponible también es importante durante los cambios de ingeniería producto de la variabilidad de la demanda mencionada inicialmente. Por ello, según Cichos y Aurich (2015) se debe definir quién será el responsable respecto al cambio de ingeniería, luego se procede a la coordinación de la capacidad disponible a tener cuando no se cuente con la estación o máquina de trabajo que estará siendo modificada; y por ello, se debe incluir esta pérdida de capacidad en la programación y control de la producción para determinar la estación o máquina a la que se le asignará esta carga de trabajo.

Davizon y otros (2015) mencionan que en la planificación y control de la producción, el plan agregado de producción representa un gran desafío para la toma de decisiones en los sistemas inventario y producción, y que el principal problema con ello es el compromiso que se tiene con la capacidad vs el inventario disponible de la empresa. La planificación de la producción agregada se ocupa de ajustar la capacidad a los cambios de la demanda, a través de un horizonte finito con el fin de lograr la rentabilidad a largo plazo y por ello a pesar de que se han desarrollado varios modelos, el problema de estas propuestas, según los autores, es que no se toma en cuenta la naturaleza dinámica del plan agregado de producción. En consecuencia, Davizon y otros (2015) sostienen que un sistema de producción diseñado para hacer frente al problema del planeamiento agregado de la producción, debe tener como objetivos contar con un inventario mínimo razonable que absorba la alta frecuencia de la demanda para amortiguar los tiempos de suministro al cliente, a través de la venta de productos desde el almacén; así se puede lograr un alto nivel de servicio siempre y cuando el comportamiento de sus partes como los materiales, flujo de información, operaciones realizadas, recursos, entre otros, han sido considerados.

Por ello, debido a los cambios de la demanda es que, según Rafiei y otros (2013), en los últimos años las empresas han cambiado su estrategia de producción hacia entornos híbridos MTS/MTO para lograr las ventajas de ambos sistemas puros, que son bajo nivel de inventario y tiempos de entrega notables. Beemsterboer y otros (2015) sostienen que planificar un sistema híbrido no es sencillo ya que las decisiones tomadas para MTS y MTO son diferentes. Los autores indican que en el MTO los productos deben ser fabricados antes de una fecha límite estimado y la programación y control de la producción se enfoca en el tiempo y secuenciación de operaciones; por otro lado, el MTS está enfocado a prevenir la falta de existencias, limitando al mismo tiempo
los costos de mantenimiento de inventario; por ello, la planificación de la producción en este caso está enfocado en los costos. Beemsterboer y otros (2015) analizaron el rendimiento de un sistema de producción híbrido que fabrica productos estándares sobre la base del MTS y personaliza productos mediante la adición de una operación de personalización para terminar los productos estándares bajo la base del MTO. Los autores dicen que se obtienen niveles óptimos de stock bajo el supuesto que las operaciones de personalización son priorizadas sobre las reposiciones de productos del MTS y que asimismo, se obtienen mayores ahorros bajo un MTS si la demanda es alta, por el contrario si la demanda es baja, se obtienen mayores ahorros bajo un enfoque MTO. La investigación hecha por los autores reveló que los beneficios de un enfoque de planificación híbrida se dan principalmente si la demanda total representa alrededor del 90% de la capacidad de producción.

Asimismo, Rafiei y otros (2013) mencionan que de acuerdo a la variabilidad de la demanda, las órdenes con bajo volumen y alta variabilidad son implementadas en una base MTO, mientras que las órdenes con alto volumen y alta variabilidad se aplicarán en un modo MTS. Davizon y otros (2015) sostienen que en el caso de la demanda, existen alternativas que permiten absorber dicha variabilidad como ajustar el nivel de capacidad mediante el seguimiento mensual de ventas y el cálculo de capacidad correspondiente, y por otro lado, el uso de inventarios manteniendo una tasa de producción constante para todo el año, usando las existencias de productos terminados para absorber las diferencias entre la producción y las ventas.

De esta manera observamos que incluso en organizaciones que poseen un sistema híbrido, es necesario considerar los factores para la ejecución del proceso de programación y control, tales como la demanda, la capacidad de producción, recursos, costos, entre otros; la implementación del proceso de programación y control debe considerar esta información durante el uso de técnicas y herramientas, como lo desarrollaron Ortiz y Caicedo (2014) tras una investigación en el año 2012 en una pequeña empresa de calzado ubicada en la ciudad de San José de Cúcuta, Colombia. Para este caso, para desarrollar un programa óptimo de la producción se usó la Teoría de Restricciones (TOC) y la Investigación de Operaciones, y de esta última específicamente la programación lineal. Así, se desarrolló un procedimiento para la PYME, el cual para Ortiz y Caicedo (2014) debe partir por la recopilación de la información como la demanda, tiempos de fabricación de pedidos y productos, capacidad de producción, tamaño de lotes de procesos, entre
otros; seguido por el desarrollo del modelo matemático el cual es luego ingresado a softwares como LINGO o WinQSB; la secuenciación de producción basado en la priorización de pedidos; la realización del diagrama de Gantt; el seguimiento a las actividades; la ejecución del programa de producción; para finalmente identificar problemas como pedidos atrasados y así poder analizar su causa raíz.

Los resultados obtenidos por Ortiz y Caicedo (2014), el cual estuvo apoyado en la guía técnica colombiana GTC-ISO/TR10013, fueron validados mediante la prueba de hipótesis y se obtuvo la reducción del gasto operacional en un periodo de 17 semanas, cumpliendo con los requerimientos de la demanda.

Se deduce y resalta entonces la importancia que tiene la realización de procedimientos para la implementación de la programación y control en las PYME (incluso si están apoyadas en guías técnicas), ya que como mencionan los investigadores, las estrategias direccionadas al desarrollo de las PYMES deben ser flexibles y de fácil implementación.

A su vez, Ramírez y otros (2011) desarrollaron un programa de operaciones para el llenado de tolvas dosificadoras en una empresa de concentrados, enfocándose principalmente en el planeamiento de requerimiento de materiales (MRP), para luego al igual que el anterior caso, desarrollar un modelo de programación lineal. El proyecto se desarrolló principalmente en las decisiones de corto y mediano plazo, ya que según Ramírez y otros (2011) en el mediano plazo se establecen el Programa Maestro de Producción (PMP) y el comentado Planeamiento de Requerimiento de Materiales (MRP); y en el corto plazo, se desarrolla la programación de operaciones, la asignación de recursos, la secuencia del trabajo y el control de los talleres, los cuales eran el objetivo principal del proyecto. Los resultados fueron medidos tras un análisis de sensibilidad variando algunos parámetros como los costos, materiales, tiempos y velocidades de llenado; en todas las variaciones, el modelo desarrollado no alteró el sistema y el inventario inicial fue quien tuvo una gran sensibilidad, mencionan los autores. Se observa entonces que en primer lugar, la validación de los beneficios del sistema propuesto de programación y control vs el sistema actual, es necesaria y se puede hacer mediante la prueba de hipótesis o el análisis de sensibilidad aplicado al desarrollo del modelo matemático desarrollado, por ejemplo. Con ello, se refleja la importancia de la recopilación de la información de los factores tales como demanda,
capacidad, tiempos, entre otros; que permitan diseñar un modelo de producción que considere, tras la implementación del proceso, todos los efectos positivos y/o negativos existentes para que el interesado en la implementación pueda tomar una decisión.

Solano y otros (2012) indican que existe un procedimiento validado para las Pymes del sector metalmecánico y aplicable a otros sectores, en el cual se propone un esquema regido por tres aspectos como son las prioridades competitivas, el sistema de producción, y las palancas de fabricación. Los autores indican que existen seis prioridades competitivas básicas en producción las cuales son la calidad, costo, entrega, innovación, flexibilidad y servicio. Solano y otros (2012) mencionan que para definir la estrategia corporativa se debe definir primero la configuración operativa, y para definir esta última se deben identificar las prioridades competitivas, las cuales permiten definir una estrategia de mejoramiento de sus sistemas de producción; y posteriormente a esta identificación se debe establecer el nivel de desempeño a través de la medición del indicador de efectividad.

Por ello, tras considerar los factores mencionados, llevar a cabo la planificación, programación y control de la producción como proyecto de implementación, requiere también otras consideraciones. Para ello, existen estándares como los que propone el *Project Management Institute (PMI)*, que para Romero (2014) se convierte en una herramienta que contribuye a los gerentes de proyectos de empresas mantener la cuota de mercado tanto en las industrias tradicionales como las industrias más desarrolladas, considerando además que una gran parte del futuro crecimiento empresarial será el resultado de proyectos desarrollados exitosos que generen nuevos productos, servicios o procedimientos. La investigadora presenta una metodología para la planificación de proyectos informáticos en empresas que administran este tipo de proyectos en la ciudad de San José de Cúcuta, la cual consiste en la utilización de técnicas y herramientas propuestas por el PMBOK.

Tras el diagnóstico realizado a este objeto de estudio, Romero (2014) indica que la gestión de proyectos realizada por esas empresas no cuenta con plantillas como el Acta de Constitución que estandarice los procesos para su posterior control y seguimiento; no se encuentran tampoco estandarizadas la plantilla EDT que permita definir las actividades a llevar a cabo; no existen formatos para la evaluación de desempeño del equipo de trabajo; así como tampoco existen
procedimientos para la gestión del control de cambios dados durante el proyecto; y, finalmente, el 90% de empresas estudiadas no cuentan con un plan de contingencia para los riesgos del proyecto. De esta manera, se observa el valor que aporta el PMBOK como guía para la dirección de proyectos, ya que como menciona Romero (2014) se detallan minuciosamente los procesos a llevar a cabo durante el ciclo de vida del proyecto con apoyo de herramientas y técnicas.

Para Brewer y Strahorn (2012), actualmente el PMBOK representa la mejor práctica contemporánea para la gestión por proyectos, convirtiéndolo en el estándar más utilizado a nivel mundial; y además, resaltan la importancia de que para poder gestionar un proyecto es necesario que el gestor del mismo posea habilidades necesarias las cuales se dividen en la técnicas y las humanas. Dentro de las habilidades humanas, Brewer y Strahorn (2012) sostienen que la confianza es una influencia importante para el éxito del proyecto, y no ocuparse en ella resulta ser un problema para este; y a pesar que el PMBOK ha incluido el término de confianza como concepto y atributo deseable en los proyectos en su última edición, no se encuentra detallada cómo se debe iniciar, desarrollar y mantener la confianza durante el proyecto. Por ello, según los autores, el desafío de un director va más allá de la implementación del proceso: éste debe procurar también fomentar una cultura de confianza exitosa en el equipo de trabajo para eliminar y/o reducir el nivel de riesgo, incertidumbre y vulnerabilidad que se encuentra en el contexto de todo proyecto y reduce su probabilidad de éxito.

Por ello, Kaleshovska (2014) sostiene que el fracaso de los proyectos es debido a que el alcance del mismo no es completamente tomado en cuenta y/o las necesidades de los usuarios no son entendidos; sin embargo, se dice que los principales causante de dicho fracaso son los propios directores de proyectos que se enfocan más en supervisar que los procesos estén yendo bien, alejándose del objetivo principal; reforzando lo indicado por Brewer y Strahorn (2012). Kaleshovksa (2014) menciona además que existen variables que impactan en el avance del proyecto, como una buena planificación, la determinación de responsabilidades claras, el control de horarios, el talento humano, el conocimiento de la gestión de proyectos básico, el apoyo ejecutivo, un enfoque en los beneficios y la gestión del cambio

Para Badewi (2015) en su investigación respecto al impacto de la gestión de proyectos y la gestión de beneficios, el concepto de éxito de proyecto como sigue:
“[...] El éxito del proyecto se mide por su eficiencia en el corto plazo y su eficacia en el logro de los resultados esperados en el mediano y largo plazo. Por lo tanto, el valor del proyecto puede ser entendido en la medida que satisface las necesidades del cliente; alinea el producto del proyecto con la estrategia de la organización y otorga un retorno a la inversión.”

El autor menciona que muchas de las empresas trabajan actualmente bajo la filosofía del “triángulo de hierro”, el cual se centra en el costo, tiempo y alcance de proyecto y no les permite darse cuenta además, en la medida de satisfacción a los clientes. Por ello, además de realizar una adecuada gestión de proyectos; el autor recalca la importancia de conocer los beneficios que se obtienen tras la implementación y cómo se deben gestionar.

Así, para Badewi (2015) la gestión de beneficios se define como la iniciación, planificación, organización, ejecución, control y el apoyo al cambio de la organización y sus consecuencias cuando se incurre por los proyectos de mecanismos de gestión que dan cuenta de los beneficios del proyecto predefinido, el cual puede ser medido a través de los Indicadores Clave de Rendimiento (KPI). Sin embargo, cabe decir que actualmente existen pocos documentos que prueben la eficacia de la gestión de beneficios, aunque para el autor es importante tomar en cuenta este modelo de gestión para utilizarla junto a la gestión de proyectos, pues garantiza un nivel significativamente más alto de éxito que otro que solo use la gestión de proyectos.

De la misma forma en que la programación y control se procura que sea sostenible, la gestión de proyectos también. Martens y Carvalho (2015) resaltan también al PMBOK como una de las guías referenciales para las compañías que están adoptando técnicas de gestión de proyectos, pero que sin embargo, no muestra un especial interés en la sostenibilidad que el proyecto debe tener, dificultando su éxito a lo largo del tiempo; y, cabe resaltar que existen cinco dimensiones referidas como criterios de evaluación de éxito de un proyecto, los cuales son la eficiencia, impacto en los clientes, impacto en el equipo, dirección del negocio y éxito, y preparación para el futuro.

Martens y Carvalho (2015) incluyen por ello una sexta dimensión de éxito de proyecto llamada sostenibilidad, la cual está relacionada a aspectos económicos, sociales y medioambientales y que estos tras incluirla en la gestión de proyectos de cuatro organizaciones de Brasil y EE.UU.,
mostraron un ligero incremento en el éxito del proyecto de 69.57% a 74.50%; aunque dicen los autores que existe aún una brecha entre la percepción de la importancia y el uso real de la sostenibilidad en la gestión de proyectos.

Para Kaleshovska (2014) la Oficina de Gestión de Proyectos garantiza la verdadera guía y apoyo a la gestión de proyectos, la cual se reconoce como la identidad que supervisa, controla y apoya la gestión de proyectos a través de la estandarización de las prácticas y la consolidación de las iniciativas. Kaleshovska (2014) apoya su postura indicando que actualmente muchas empresas en el mundo están adoptando el soporte de la Oficina de Gestión de Proyectos debido a los beneficios que esta otorga. Así, la autora nos muestra que de acuerdo a la encuesta realizada por el Instituto de la Gestión de Proyectos en el año 2011 a profesionales gestores de proyectos que usaron a la Oficina de Gestión de Proyectos como soporte, registraron un 67% de proyectos con éxito.

De igual manera Mas y Lluis (2013) revelan que existen más estándares de los que propone el PMI con su PMBOK; por ejemplo se tiene la ISO que posee las normas ISO/IEC 12207 que agrupa todos los procesos del ciclo de vida y la ISO/IEC 29110 que incluye un subconjunto de procesos de la norma ISO/IEC 12207; el Modelo de Procesos de PRINCE2 un método exclusivamente para proyectos de TIC; el Modelo de competencias IPMA 4-L-C basado en las competencias profesionales que un gestor de proyectos debe tener.

Los autores concluyen en su investigación que para la implementación de un software en una PYME, es recomendable en primer lugar hacer una comparación entre los estándares y normas existentes para saber cuál se acomoda más a los intereses de la empresa; y tras ello, para este caso analizado, encontraron que tanto la ISO/IEC 29110 como la guía PMBOK tenían similitudes en cuanto a los procesos que estos incluían. Hay que tomar en cuenta como indican Mas y Lluis (2013) que la ISO/IEC 29110 solo aplica para implementaciones de software, mas no de procesos como el de programación y control de la producción; sin embargo, se refleja la importancia y la facilidad de adaptación que tiene el PMBOK debido a las técnicas y herramientas que propone que toda empresa puede aplicar. De esta manera, los autores confirman que para aumentar la madurez de una empresa es necesario implantar las buenas prácticas de gestión de proyectos.
Para Turner y otros (2012) las pequeñas y medianas empresas desempeñan un papel importante en la actividad económica a través del empleo, la innovación y el crecimiento; y asimismo necesitan una forma más simple de gestión de proyectos que suelen utilizar las grandes organizaciones, lo cual requerirá menos recursos para su aprobación. Los autores sostienen que no se debe dudar de la importancia de los proyectos en las Pyme, pero la comunidad en general hace poco para proporcionar a estas una orientación gestión de proyectos adecuada.

Por ello, Turner y Kelly (2012) entrevistaron a 18 empresas de Irlanda, Suecia, Austria y Rumanía para saber en qué medida la gestión de proyectos se utiliza en la Pymes y cuáles son los componentes clave utilizados. Tras la investigación, se determinó que las pequeñas y medianas empresas hacen un uso considerable de proyectos en sus negocios, y es la edad más que el tamaño de la empresa que determina la medida en que los proyectos son usados. Asimismo, la investigación determinó que las pequeñas empresas tienden a usar una gestión de proyectos menos formal que las grandes. De esta manera, Turner y Kelly (2012) sostienen que las micro y pequeñas empresas necesitan menos burocracia y más gente enfocada a la gestión del proyecto para facilitar el trabajo en equipo.

Por otro lado, los resultados de la investigación mostraron que las Pyme utilizan una gama reducida de herramientas, en comparación con las grandes empresas; y que la gestión de requisitos es la práctica más importante (la cual fue incorporada en el PMBOK), le siguen el uso de hitos y el cronograma de trabajo. Asimismo, los procedimientos usados por las Pyme en la gestión de proyectos incluyen reportes de costo y tiempo, riesgo y gestión de problemas y la estructura del desglose de trabajo.
1.2. Normativa

Como se observará posteriormente, el proyecto de investigación está enfocado únicamente al planeamiento y control de la producción de planchas de acero en una empresa correspondiente al sector metalmecánico.

Para ello, existen especificaciones de fabricación para la industria del acero, entre las cuales se encuentran las planchas delgadas de acero al carbono laminado en frío y en caliente, como por ejemplo la desarrollada y aprobada en el año 1990 por la Comisión Venezolana de Normas Industriales que se observan a continuación:

a) COVENIN 853-90: Láminas y bobinas de acero al carbono laminado en frío. Espesores y tolerancias dimensionales y de forma.

En esta norma se establecen los espesores nominales de las láminas y bobinas de acero al carbono laminado en frío con las masas correspondientes y las tolerancias admisibles, dimensionales y de forma. Para su desarrollo se apoyó en la norma ASTM-A568M y la norma COPANT-R33 Parte I.

Se divide en siete puntos, en donde se detallan el objeto y campo de aplicación, definiciones, símbolos y abreviaturas, requisitos, métodos de ensayo, y marcación, rotulación y embalaje.

En el quinto punto se detallan los requisitos dimensionales que deben tener las planchas, las cuales a modo de ejemplo, mencionaremos algunas como se muestran a continuación:
a.1) Espesores Nominales:

Tabla 1: Serie de espesores nominales de láminas y bobinas de acero al carbono laminados en frío y masas correspondientes

<table>
<thead>
<tr>
<th>Espesor nominal (mm)</th>
<th>Masa Media M (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20</td>
<td>1,57</td>
</tr>
<tr>
<td>0,27</td>
<td>2,12</td>
</tr>
<tr>
<td>0,35</td>
<td>2,75</td>
</tr>
<tr>
<td>0,45</td>
<td>3,53</td>
</tr>
<tr>
<td>0,60</td>
<td>4,71</td>
</tr>
<tr>
<td>0,70</td>
<td>5,49</td>
</tr>
<tr>
<td>0,80</td>
<td>6,28</td>
</tr>
<tr>
<td>0,90</td>
<td>7,06</td>
</tr>
<tr>
<td>1,10</td>
<td>8,63</td>
</tr>
<tr>
<td>1,20</td>
<td>9,42</td>
</tr>
<tr>
<td>1,40</td>
<td>10,99</td>
</tr>
<tr>
<td>1,50</td>
<td>11,77</td>
</tr>
<tr>
<td>1,90</td>
<td>14,91</td>
</tr>
<tr>
<td>2,00</td>
<td>15,70</td>
</tr>
<tr>
<td>2,10</td>
<td>16,48</td>
</tr>
<tr>
<td>2,20</td>
<td>17,27</td>
</tr>
<tr>
<td>2,30</td>
<td>10,05</td>
</tr>
<tr>
<td>2,40</td>
<td>18,84</td>
</tr>
<tr>
<td>2,50</td>
<td>19,62</td>
</tr>
<tr>
<td>2,60</td>
<td>20,41</td>
</tr>
<tr>
<td>2,70</td>
<td>21,19</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>2,80</td>
<td>21,98</td>
</tr>
<tr>
<td>2,90</td>
<td>22,76</td>
</tr>
<tr>
<td>3,00</td>
<td>23,55</td>
</tr>
<tr>
<td>3,10</td>
<td>24,33</td>
</tr>
<tr>
<td>3,20</td>
<td>25,12</td>
</tr>
<tr>
<td>3,30</td>
<td>25,90</td>
</tr>
<tr>
<td>3,40</td>
<td>26,69</td>
</tr>
<tr>
<td>3,50</td>
<td>27,47</td>
</tr>
</tbody>
</table>

Fuente: Norma Venezolana COVENIN 853-90
Tabla 2: Tolerancias en el espesor en láminas o en bobinas

<table>
<thead>
<tr>
<th>Espesor nominal e (mm)</th>
<th>Discrepancias superiores (+) e inferiores (-) admisibles en el espesor nominal (mm) para anchos nominales “a” en mm $500 \leq a \leq 1800$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e \leq 0,40$</td>
<td>$\pm 0,05$</td>
</tr>
<tr>
<td>$0,40 < e \leq 1,00$</td>
<td>$\pm 0,08$</td>
</tr>
<tr>
<td>$1,00 < e \leq 1,20$</td>
<td>$\pm 0,10$</td>
</tr>
<tr>
<td>$1,20 < e \leq 2,50$</td>
<td>$\pm 0,13$</td>
</tr>
<tr>
<td>$2,50 < e \leq 3,50$</td>
<td>$\pm 0,15$</td>
</tr>
</tbody>
</table>

Fuente: Norma Venezolana COVENIN 853-90

Tabla 3: Tolerancias en el ancho de las láminas no reescuadradas

<table>
<thead>
<tr>
<th>Ancho nominal “a” en (mm)</th>
<th>Discrepancia superior (+) admisible en el ancho nominal (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Láminas con bordes recortados</td>
</tr>
<tr>
<td>$500 < a \leq 1200$</td>
<td>5</td>
</tr>
<tr>
<td>$1200 < a \leq 1500$</td>
<td>6</td>
</tr>
<tr>
<td>$1500 < a \leq 1800$</td>
<td>8</td>
</tr>
<tr>
<td>$1800 < a \leq 2500$</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: Norma Venezolana COVENIN 853-90

Tabla 4: Tolerancias en la longitud de las láminas no reescuadradas

<table>
<thead>
<tr>
<th>Longitud nominal L en (mm)</th>
<th>Discrepancia superior (+) admisible en la longitud en (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$300 < L \leq 1500$</td>
<td>06</td>
</tr>
<tr>
<td>$1500 < L \leq 3000$</td>
<td>20</td>
</tr>
<tr>
<td>$3000 < L \leq 6000$</td>
<td>35</td>
</tr>
<tr>
<td>$L > 6000$</td>
<td>45</td>
</tr>
</tbody>
</table>

Fuente: Norma Venezolana COVENIN 853-90
b) COVENIN 854-90: Láminas y bobinas de acero al carbono laminado en caliente.

En esta norma se establecen los espesores nominales de las láminas y bobinas de acero al carbono laminado en caliente con las masas correspondientes y las tolerancias admisibles, dimensionales y de forma. Para su desarrollo se apoyó en la norma ASTM-A568M, la norma ASTM-A635M, y la norma COPANT-R33 Parte II.

Al igual que la norma 853, se divide en siete puntos, en donde se detallan el objeto y campo de aplicación, definiciones, símbolos y abreviaturas, requisitos, métodos de ensayo, y marcación, rotulación y embalaje.

b.1) Espesores Nominales:

Tabla 5: Serie de espesores nominales de láminas y bobinas de acero al carbono en caliente y sus masas correspondientes

<table>
<thead>
<tr>
<th>Espesor nominal (mm)</th>
<th>Masa Teórica M (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,00</td>
<td>15,70</td>
</tr>
<tr>
<td>2,30</td>
<td>18,05</td>
</tr>
<tr>
<td>2,50</td>
<td>19,62</td>
</tr>
<tr>
<td>2,80</td>
<td>21,98</td>
</tr>
<tr>
<td>3,00</td>
<td>23,55</td>
</tr>
<tr>
<td>3,80</td>
<td>29,83</td>
</tr>
<tr>
<td>4,10</td>
<td>32,18</td>
</tr>
<tr>
<td>5,00</td>
<td>39,25</td>
</tr>
<tr>
<td>5,50</td>
<td>43,17</td>
</tr>
<tr>
<td>6,00</td>
<td>47,10</td>
</tr>
<tr>
<td>7,00</td>
<td>54,95</td>
</tr>
<tr>
<td>8,00</td>
<td>62,80</td>
</tr>
</tbody>
</table>
Tabla 6: Tolerancia en el espesor en láminas cortadas o en bobinas

<table>
<thead>
<tr>
<th>Espesor nominal en (mm)</th>
<th>Discrepancias superiores (+) e inferiores (-) admisibles en el espesor nominal (mm) para anchos nominales “a” en (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a ≤ 1200</td>
</tr>
<tr>
<td></td>
<td>a > 1200</td>
</tr>
<tr>
<td>5,50 < e ≤ 8,00</td>
<td>± 0,30</td>
</tr>
<tr>
<td>8,00 < e ≤ 10,00</td>
<td>± 0,33</td>
</tr>
<tr>
<td>10,00 < e ≤ 12,50</td>
<td>± 0,35</td>
</tr>
</tbody>
</table>

Tabla 7: Tolerancias en el ancho de las láminas no reescuadradas

<table>
<thead>
<tr>
<th>Ancho nominal “a” (mm)</th>
<th>Discrepancia superior (+) admisible en el ancho nominal mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Láminas con bordes recortados</td>
</tr>
<tr>
<td></td>
<td>e < 4,50</td>
</tr>
<tr>
<td>500 < a ≤ 600</td>
<td>3</td>
</tr>
<tr>
<td>600 < a ≤ 1200</td>
<td>5</td>
</tr>
<tr>
<td>1200 < a ≤ 1500</td>
<td>6</td>
</tr>
<tr>
<td>1500 < a ≤ 1800</td>
<td>8</td>
</tr>
<tr>
<td>1800 < a ≤ 2500</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabla 8: Tolerancias en la longitud de las láminas no reescuadradas
<table>
<thead>
<tr>
<th>Longitud nominal “L” en mm</th>
<th>Discrepancia superior (+) admisible en la longitud en mm ≤ 4,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 < L ≤ 1000</td>
<td>8</td>
</tr>
<tr>
<td>1000 < L ≤ 1500</td>
<td>12</td>
</tr>
<tr>
<td>1500 < L ≤ 3000</td>
<td>20</td>
</tr>
<tr>
<td>3000 < L ≤ 4000</td>
<td>25</td>
</tr>
<tr>
<td>4000 < L ≤ 5000</td>
<td>35</td>
</tr>
<tr>
<td>5000 < L ≤ 6000</td>
<td>40</td>
</tr>
<tr>
<td>L > 6000</td>
<td>45</td>
</tr>
</tbody>
</table>

Fuente: Norma Venezolana COVENIN 854-90

Tras observar las tablas con las tolerancias admisibles según la Comisión Venezolana de Normas Industriales; cabe resaltar que en nuestro país también existen especificaciones dadas por la Norma Técnica Peruana (NTP) para planchas delgadas de acero al carbono laminados en frío y en caliente como se menciona en el Catálogo Especializado de Normas Técnicas Peruanas publicada por el Centro de Información y Documentación (CID) del Instituto Nacional de Defensa de la Competencia y de la Protección Intelectual (INDECOPI) en el año 2009:

NTP 341.081: 1975 Planchas delgadas de acero al carbono laminados en frío.

Establece la serie de espesores normales de las planchas delgadas de acero al carbono laminadas en frío y los límites de discrepancias admisibles en sus dimensiones y formas. Asimismo, establece las tolerancias que deben cumplir las planchas delgadas laminadas en frío, con espesores comprendidos entre 0,30 mm y 3,50 mm inclusive y anchos mayores de 500 mm. Las tolerancias establecidas en esta norma se refieren a las características siguientes: espesor, ancho, longitud, flecha, descuadrado, aplanado y tolerancias de corte.

Establece la serie de espesores normales de las planchas delgadas de acero al carbono laminadas en caliente y los límites de discrepancia admisibles en sus dimensiones y formas. Asimismo, establece las tolerancias que deben cumplir las planchas delgadas laminadas en caliente, con espesores de hasta 4,75 mm inclusive y anchos mayores de 500 mm. Las tolerancias establecidas en esta norma, al igual que en la anterior, se refieren a las características siguientes: espesor, ancho, longitud, flecha, descuadro, aplanado y tolerancia de corte.

De esta manera, se pretende tomar como guía las tablas publicadas por COVENIN debido a su acceso libre de consulta; ya que la Norma Técnica Peruana posee un costo que está fuera del presupuesto del proyecto.
1.3. Conceptos generales

1.3.1. Programación y control

Estrategia de manufactura: Comprende un conjunto de objetivos y programas de acción que tiene como fin asegurar ventajas competitivas sostenibles en el tiempo. Se definen seis estrategias: costo, calidad, diferenciación, plazo de entrega, flexibilidad y la innovación. El área de operaciones debe decidir sobre qué tipo de estrategia estará alineada la producción. (Castro y Véles 2000)

Lista de materiales explosionada: Permite conocer las cantidades de cada componente a fabricar o comprar, según la planificación de requerimiento de materiales (MRP). (Velasco y Campins 2000)

Lote económico de pedido: Cantidad a solicitar cada vez que se observa la necesidad de reposición, para poder lograr que los costos de adquisición y posesión sean mínimos. (Velasco y Campins 2000)

Planificación a largo plazo: Se da por varios años; está en función de los objetivos de la empresa para plantear el plan de acción en cuanto a instalaciones, líneas de productos, volúmenes de producción, entre otros. (Velasco y Campins 2000)

Planificación a medio plazo: Se da entre seis y dieciocho meses; está en función a lo desarrollado por la planificación a largo plazo, definiendo de esta manera familias de productos, planificación de ventas, presupuestos, contratos de personal, entre otros. Se le conoce también como planificación agregada. (Velasco y Campins 2000)

Planificación a corto plazo: Está dado por el plan maestro de producción (PMP), el cual parte por la planificación agregada y tiene por objetivo realizar el plan de producción respecto a stocks, horas extras, producción, necesidades de componentes, materiales, entre otros. (Velasco y Campins 2000)
Planificación de requerimiento de materiales (MRP) : Tiene por objetivo definir la cantidad de subconjuntos, componentes y materias primas por periodos de tiempo, partiendo por el plan maestro de producción (PMP). (Velasco y Campins 2000)

Predicción de la demanda : Estimación de los requerimientos de productos por parte de los clientes. Volumen de ventas que la empresa espera tener en un determinado periodo. Esta se convierte en la entrada principal de la planificación y control de la producción. (Velasco y Campins 2000)

Punto de pedido o reposición : Fecha en la que cual el lote de compra debe solicitarse para reponer inventarios. (Velasco y Campins 2000)

Sistema productivo bajo pedido : Se refiere a los procesos de la empresa que fabrican productos a medida, es decir, según requisitos del cliente. Sistema personalizado. (Castro y Véles 2000)

Sistema productivo de flujo lineal : Se refiere a los procesos de la empresa que fabrican productos estandarizados y el inventario de productos terminados es alto. (Castro y Véles 2000)

Sistema productivo de flujo continuo : Se diferencia del sistema de flujo lineal porque suelen ser commodities y una de las características de este tipo de empresas es que suelen evitar paros de producción, ya que operan las 24 horas del día. (Castro y Véles 2000)

Sistema productivo por lotes : Se refiere a los procesos de la empresa que fabrican productos con un menor grado de personalización que el sistema bajo pedido, y sus equipos poseen una combinación de propósito general y especializado. Se puede fabricar para mantener inventario o bajo pedido. (Castro y Véles 2000)

Stock de seguridad : Cantidad que no se utiliza si el consumo es normal y no existe retraso en los pedidos; amortigua la probabilidad de que la empresa se quede sin stock. (Velasco y Campins 2000)
1.3.2. Gestión de proyectos

Diagrama de Gantt: El diagrama de Gantt es una herramienta de la gestión de proyectos que consiste en representar la programación de las tareas en un diagrama de barras horizontal en el que la longitud de cada una representa la duración de cada uno, y asimismo se le puede asignar un responsable, costos, entre otros, que permita el seguimiento en el cumplimiento de actividades de proyecto. (Velasco y Campins 2013)

Dirección de Proyectos: Es la aplicación de conocimientos, habilidades, herramientas y técnicas a las actividades del proyecto para cumplir con los requisitos de este. (PMI 2013)

Estructura de descomposición de trabajo (EDT): Permite tener un mayor control sobre las actividades del proyecto, las cuales se descomponen similar a un organigrama hasta un nivel en el que se pueda asignar una persona a la responsabilidad de trabajo. (Velasco y Campins 2013)

Interesados o Stakeholders: Refiere a todos los miembros del equipo, entidades internas o externas de la organización que están interesadas en el proyecto. El gestor de proyectos debe procurar atender los requisitos de cada parte interesada. (PMI 2013)

Guía del PMBOK: Es un documento formal publicado por el Project Management Institute (PMI) que describe normas, métodos, procesos y prácticas establecidas para la dirección de proyectos y los procesos relacionados. (PMI 2013)

Oficina de dirección de proyectos: La oficina de dirección de proyectos facilita a las empresas los recursos, metodologías, herramientas y técnicas adecuadas para lograr la estandarización de procesos y consecución de objetivos. (PMI 2013)

Portafolio: Un portafolio es el conjunto de proyectos, programas, operaciones y subconjuntos de portafolios que se llevan a cabo como grupo para alcanzar un determinado objetivo estratégico. (PMI 2013)

Programa: Se gestionan de manera ordenada para contribuir con el portafolio y son producto de los objetivos específicos de un conjunto de proyectos. (PMI 2013)
Proyecto: Se define como un esfuerzo temporal que se ejecuta para crear algún producto, servicio o resultado específico. Estos poseen un inicio y fin establecidos; y se dice que concluye con la consecución de los objetivos o cuando se da un cese al proyecto porque ya no existe la necesidad de llevarlo a cabo. (PMI 2013)

1.3.3. Gestión de procesos

Agentes de proceso: son aquellos que intervienen directamente con el proceso como los clientes, proveedores, responsables de proceso, y otros agentes que puedan tener algún tipo de interés en ello. (Junta de Castilla y León 2004)

Gestión de procesos: es un modelo de gestión que identifica a la organización como un conjunto de procesos globales orientados a la satisfacción del cliente y de su personal, el seguimiento y control, alinearse a la misión y visión, y finalmente debe estar basado en resultados. (Junta de Castilla y León 2004)

Indicadores de proceso: se utilizan para medir las variables críticas de los procesos, como el tiempo, cantidad de errores, nivel de satisfacción del cliente, entre otros; permite comparar escenarios y tomar con ello tomar alguna acción de mejora. (Bravo 2009)

Proceso: se define como la secuencia ordenada de actividades que están interrelacionadas entre sí para darle un servicio al cliente y crear un valor agregado para sí mismo. (Junta de Castilla y León 2004)

Procesos de apoyo: están enfocados en darle soporte a los procesos de negocio, y son fundamentales para la manutención de las actividades de los demás procesos de la empresa. (Bravo 2009)

Procesos estratégicos: están relacionados con el establecimiento de la misión, visión, objetivos, indicadores, entre otros. Se trata entonces, de la alineación de la estrategia de la organización. (Bravo 2009)
Procesos de negocio: están enfocados directamente en atender la misión de la empresa y con ello, satisfacer las necesidades de los clientes. (Bravo 2009)

Sistema: se define como un conjunto de procesos que tienen como fin el logro de un objetivo en común. En cada proceso existen subprocesos que componen a este y permiten identificar algún problema para su tratamiento y permitir la consecución de objetivos específicos. (Junta de Castilla y León 2004)

1.4. Casos de éxito

1.4.1. Plan óptimo de producción en una planta embotelladora de gaseosas

En San José de Cúcuta, Colombia se diseñó un plan óptimo de producción en una planta embotelladora de gaseosas en el año 2012, donde se realizaron diversos procedimientos para lograr conocer las cantidades adecuadas de producción al menor costo, tomando como base la metodología de la investigación de operaciones con el uso de la técnica de la programación lineal y la metodología de la Teoría de Restricciones (TOC) para identificar las restricciones del sistema e incluirlas en el modelo matemático de la programación lineal. Tras los resultados obtenidos se pudo identificar el cuello de botella, que es el primer paso del TOC. La principal restricción para este caso fue la capacidad de envasado disponible, que fue explotada de acuerdo al segundo paso del TOC, estableciendo un escenario en donde la demanda aumenta. Tras una nueva corrida considerando este nuevo escenario de demanda, se determinó que la empresa podía responder a este incremento sin necesidad de incurrir en recursos adicionales. Por ello, se subordinó todo a esta nueva restricción, dando como resultado la utilización al máximo de la capacidad disponible de envasado lo cual implica un adecuado aprovechamiento de sus recursos. Para poder elevar luego la restricción, el aumento de demanda era necesario, y de ser así finalmente se volvería a ejecutar el primer paso para identificar un nuevo cuello de botella. Tras la simulación de ello, se obtuvo que en caso el nivel de demanda incremente, los recursos actuales podrían envasar hasta un 26.8% más de lo que se fabricaba en aquel entonces. Los investigadores Ortiz y Caicedo (2012) determinaron por ello que el plan óptimo de producción
diseñado, podía ser utilizado por cualquier otra embotelladora si poseía características similares a la estudiada, y poder obtener también resultados positivos.

1.4.2. Procedimiento para la programación y control de la producción de una pequeña empresa
En el año 2012, nuevamente en San José de Cúcuta, Colombia, se diseñó un procedimiento para la programación y control en una pequeña empresa de calzado utilizando los mismos conceptos de teoría de restricciones e investigación de operaciones a través de la programación lineal, para solucionar un problema de planeamiento agregado. En este caso, se elaboró un procedimiento para que la pequeña empresa pudiera llevar a cabo la programación, de tal modo que sea flexible y sencilla para su implementación. Ortiz y Caicedo (2012) reconocieron la importancia de definir desde un principio el objetivo y el alcance de las actividades que formarán parte de la programación y control de la producción; así como tomar en cuenta condiciones generales como los requerimientos de la demanda, la capacidad de producción, turnos de trabajo flexibles, la asignación de órdenes de trabajo a otra máquina si otra se descompone, determinar el tamaño de lote, entre otros. Tras este levantamiento de información, los investigadores diseñaron el modelo matemático que fue ingresado al software de programación lineal; definiendo las restricciones del sistema, objetivos y capacidades. Luego, se elaboró un diagrama de Gantt para determinar los tiempos de inicio y fin de actividades en cada etapa del proceso y poder ejecutar el programa de producción.

Tras la ejecución, la programación de la producción de marquillas estampados por transferencia térmica fue validada mediante la prueba de hipótesis para determinar qué procedimiento era el adecuado para la empresa; el actual o el propuesto. Tras el análisis se obtuvo la reducción del gasto operativo en $ 2,292,964 dólares en un periodo de 17 semanas de seguimiento y control, significando un beneficio sustancial para la empresa. Por ello, como en el caso anterior, los investigadores indicaron que el procedimiento propuesto podía ser también aplicado como herramienta por cualquier pequeña empresa para generar ahorros tras la reducción de gastos operativos.
1.4.3. Programación de operaciones para el llenado de tolvas dosificadoras en una empresa de concentrados

En el año 2012, en una empresa de alimentos concentrados de la región del Valle del Cauca, Colombia se desarrolló un modelo de programación de la producción tomando como base la explosión de materiales y la aplicación de otro modelo matemático de programación lineal para el llenado de tolvas dosificadoras. Para conocer los requerimientos de materias primas y materiales, se utilizó la planificación de requerimiento de materiales (MRP), donde además se conocen los tiempos de entrega. Una vez obtenida la información, se dio paso a la programación de producción, la cual como se mencionó, estuvo apoyada de un modelo matemático. De esta manera, inicialmente se determinó los niveles mínimos de inventario inicial de materia prima que debía tener cada tolva, luego, con esta información como dato de entrada se fija como objetivo la minimización de costos de set up y mantenimiento de tolvas. Para poder realizar esto, se debió recolectar información sobre el MRP, lista de materiales, velocidades de llenado, capacidad y tiempos de set up. Tras la integración del MRP y la programación de operaciones, la empresa pasó de poseer un 19% de horas improductivas por paro de producción debido a la falta de materia prima, a eliminar esta ocurrencia de paros lo cual representó un ahorro aproximado de 35 millones de pesos mensuales, lo que equivale a $ 11,700 dólares aproximadamente. Así, Ramírez; Torné y Orejuela (2012) resaltaron la importancia de la integración del MRP y el programa de operaciones, ya que permite una mejor toma de decisiones en el mediano y corto plazo.

1.4.4. Modelo de planificación de producción para un sistema multiproducto con múltiples líneas de producción

En el año 2010, se dio la planificación de la producción en una fábrica de bolas de acero para la molienda de minerales de la ciudad de Concepción, Chile, la cual opera bajo un sistema de flujo continuo. Para este caso se desarrolló el modelo de planificación agregada considerando un periodo de 12 meses y considerando también como primer paso algunas variables de decisión como el volumen de producción, volumen de compras, materias primas, nivel de inventario final de producto terminado y materia prima, por ejemplo. Luego, se elaboró un modelo de
programación lineal considerando dichas variables mencionadas y parámetros como los costos de inventario, la demanda, tasa de producción, entre otros. El modelo se dio en MS Excel utilizando el *Premium Solver Platform* y se probó en una de las plantas existentes de la empresa; esto dio como resultado el incremento de la productividad en un 3.6% con una reducción de costos de 5%, debido principalmente al mejor uso de la capacidad y disminución de inventarios durante el periodo de planificación. Tras los resultados obtenidos, Viveros y Salazar (2010) mencionaron luego la posibilidad de ampliar el modelo a las demás plantas en toda la cadena de suministro, buscando minimizar el costo de producción y de transporte de materias primas desde los proveedores y productos terminados hasta los clientes.

Tras exponer los resultados beneficiosos para las empresas con la implementación de un sistema de planificación, programación y control junto con las posiciones que han tomado diversos autores como se mencionó en el estado del arte, en el siguiente capítulo se dará la planificación de todo el proyecto con el fin de poder establecer principalmente las actividades y tiempos que adoptará el equipo del proyecto y la empresa, con el fin de implementar el sistema propuesto tras la evidencia del costo de oportunidad presentado en la familia de productos escogida.
CAPÍTULO 2 : PLAN DEL PROYECTO

Este capítulo consiste principalmente en el desarrollo del plan del proyecto para la implementación del sistema de planificación, programación y control de la producción de planchas en la empresa Fierrosol S.A.C., el cual estará enfocado en la gestión de proyectos. Previamente, al inicio del desarrollo del plan del proyecto, se presentará información general de la empresa en estudio, la estructura de producción actual, las ventas perdidas que originaron el interés en el dueño, también gerente general de la empresa, en la implementación del proceso. Una vez presentado lo mencionado, se iniciará con la elaboración del plan del proyecto por lo que serán identificados los interesados en el mismo; asimismo, se identificarán los intereses, las inquietudes respecto al proyecto de cada uno. Seguidamente, serán definidos los requisitos, objetivo, alcance, restricciones del proyecto de implementación, y la Estructura de Desglose de Trabajo (EDT). Luego, se presentarán las actividades, la secuencia, recursos y duración estimada para cada una, y a partir de ello, será elaborado un diagrama de Gantt que representará el cronograma del proyecto. Posteriormente, se elaborará el organigrama de la empresa, una matriz de responsabilidades asignada al equipo del proyecto. Se listarán los riesgos del proyecto y analizará cada uno de ellos para determinar las consecuencias que generan en el proyecto. Después, será estimado el presupuesto para el proyecto y finalmente; será mostrado el plan de comunicaciones en el cual estarán programadas las reuniones necesarias para evaluar e informar el desarrollo del proyecto.
2.1. Información de la empresa

2.1.1. Datos generales

Fierrosol S.A.C. es una pequeña empresa correspondiente a la industria metalmecánica que ofrece servicios de corte, doblez y perforación de planchas, rolado de planchas y tubos, y soldadura MIG/TIG de productos bajo pedido de clientes y productos que también se encuentran para la puesta en venta de acuerdo a la disponibilidad de producto.

Tabla 9: Datos de la empresa

<table>
<thead>
<tr>
<th>Información General</th>
<th>Datos de la empresa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razón Social: Fierrosol S.A.C.</td>
<td>RUC: 20451762827</td>
</tr>
<tr>
<td>Razón Social: Fierrosol S.A.C.</td>
<td>Dirección: Av. El Sol 1021 4D – La Campiña, Chorrillos, Lima, Perú</td>
</tr>
<tr>
<td>Razón Social: Fierrosol S.A.C.</td>
<td>CIIU: 2811 – Fabricación de productos metálicos para uso estructural</td>
</tr>
<tr>
<td>Tamaño de empresa: Pequeña empresa</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Fierrosol S.A.C - Elaboración propia
2.1.2. Estructura de Producción

La estructura de producción de la empresa está basada en un proceso por lotes pequeños, ya que trabaja con una gran variedad de productos que se diferencian por las dimensiones solicitadas por el cliente así como alguna característica especial que este requiera para alguno de estos. Por ello, el volumen requerido para un determinado producto no es alto, pues está determinado por lo demandado por el cliente, ya que el método bajo el cual trabaja la empresa consiste en disponer de cierta cantidad de productos para la puesta en venta, y una vez que llegue el cliente pueda encontrar disponible lo solicitado.

Por otro lado, Fierrosol S.A.C. recibe solicitudes del cliente que pueden ser, por ejemplo, productos para proyectos de construcción o eventos, por lo que el volumen requerido para estos es pequeño, pues son modelos específicos presentados por el cliente mediante diseños para su elaboración por parte de la empresa.

La empresa trabaja bajo un sistema híbrido, es decir, donde se encuentran los sistemas conocidos como producción bajo pedido (MTO: “make-to-order”), y producción para mantener inventario...
(MTS: “make-to-stock”). Cada uno de ellos tiene una funcionalidad diferente en la empresa. El sistema bajo pedido, está dedicado en brindar servicios especiales para producir pedidos personalizados por el cliente principalmente para estructuras utilizadas en obras, andamios, entre otros, los cuales son requeridos con baja frecuencia y en cantidades pequeñas. Por otro lado, se encuentra el sistema para mantener inventario por medio del cual la empresa genera stock para cumplir con la demanda, pues se mantiene una cantidad de inventario de productos que serán vendidos en el año que le permita cubrir las necesidades del consumidor.

Dicho esto, a continuación se muestra por medio del flujo de actividades cómo se trabaja con el sistema bajo pedido en Fierrosol S.A.C.
Figura 2: Flujo de actividades para el sistema de producción bajo pedido

Fuente: Elaboración propia
El proceso inicia con la llegada del cliente, el cual requiere un modelo específico de producto y en base a ese modelo se realiza una cotización. Cuando esta es aceptada, se procede a realizar el pago por el servicio, pues se trata de un producto a pedido. Una vez efectuado este, el personal de producción revisa el pedido y programa una fecha de entrega, ya que calculan el tiempo que les tomará realizar el producto según su experiencia, es decir, empíricamente. Cuando el producto está terminado, se procede con la entrega de este en la fecha acordada con el cliente.

Por otra parte, por medio del siguiente flujo de actividades se muestra las actividades realizadas bajo el sistema de producción para mantener inventario en Fierrosol S.A.C.
Figura 3: Flujo de actividades de productos para puesta en venta

Fuente: Elaboración propia
El proceso inicia con la llegada del cliente, éste pregunta por el producto requerido y se le brinda una cotización. Una vez que este acepte la cotización, se revisa el nivel de inventario del producto buscado. Finalmente, de contar con disponibilidad de productos, se genera la venta y despacha al cliente. Sin embargo, cuando el producto no se encuentra disponible, se registra como venta perdida por lo que es necesario solicitar a Operaciones la reposición de los inventarios. Esto paralelamente está relacionado con el abastecimiento de la materia prima, pues para poner en marcha la producción es necesario tener la disponibilidad de materiales.

El control y manejo del sistema híbrido de Fierrosol S.A.C. está dado por el área administrativa y el área de operaciones. Respecto al área administrativa, actualmente registra las ventas generadas mensualmente, así como las ventas perdidas; sin embargo, no se realiza un análisis de las ventas perdidas generadas y la demanda que presenta cada producto. El dueño no promueve reuniones donde se traten estos temas que a la larga traen consigo pérdida de clientes, aumento de la participación de la competencia en el mercado. Asimismo, el precio de venta del producto, en reiteradas ocasiones, es fijado por el dueño, quien lo determina de acuerdo al volumen comprado por el cliente.

Por otro lado, en cuanto al área de operaciones, a raíz de que no existe un análisis de la demanda, se fabrican cantidades de productos de acuerdo a la experiencia del dueño; es decir, si observa que su almacén de producto terminado se está agotando, solicita producir ciertas cantidades de cada producto que considere pueda abastecer la demanda. El área de operaciones se rigen de acuerdo a lo señalado por el dueño.
2.2. Diagnóstico

2.2.1. Análisis de las Familias de Productos

En el año 2015 las ventas totalizaron un monto considerable, las cuales están agrupadas por familias de productos como se mostrará a continuación.

Clasificación ABC

Para realizar la clasificación de las familias, se utilizaron los datos de las ventas del año 2015, utilizando la clasificación ABC.

Tabla 10: Ventas por tipo de productos según clasificación

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Familia</th>
<th>Tipo</th>
<th>Item</th>
<th>Volumen</th>
<th>Precio Base Referencial</th>
<th>Ventas</th>
<th>% Acumulado</th>
<th>Volumen Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Planchas</td>
<td>Galvanica</td>
<td>PGALV</td>
<td>12046</td>
<td>S/. 11.43</td>
<td>S/. 137,699.00</td>
<td>19.6%</td>
<td>18141</td>
</tr>
<tr>
<td>A</td>
<td>Planchas</td>
<td>Al Caliente</td>
<td>PLAC</td>
<td>3991</td>
<td>S/. 65.72</td>
<td>S/. 262,305.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Planchas</td>
<td>Estrada</td>
<td>PLAC ESTR</td>
<td>1744</td>
<td>S/. 59.31</td>
<td>S/. 103,440.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Planchas</td>
<td>Al Frío</td>
<td>PLAF</td>
<td>360</td>
<td>S/. 140.03</td>
<td>S/. 50,409.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Otros</td>
<td></td>
<td>OTRO</td>
<td></td>
<td></td>
<td>S/. 502,580.00</td>
<td>24.6%</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo Acero Inox</td>
<td>TAX</td>
<td>291</td>
<td>S/. 62.55</td>
<td>S/. 18,202.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo Cuadrado Negro</td>
<td>TCN</td>
<td>1995</td>
<td>S/. 51.64</td>
<td>S/. 103,021.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo Cuadrado Electrosoldado</td>
<td>TCED</td>
<td>921</td>
<td>S/. 18.53</td>
<td>S/. 17,065.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo Electro soldado rectangular</td>
<td>TER REC</td>
<td>239</td>
<td>S/. 38.43</td>
<td>S/. 9,185.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo Negro rectangular</td>
<td>TNR REC</td>
<td>865</td>
<td>S/. 76.57</td>
<td>S/. 66,231.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo Redondo negro</td>
<td>TRN RED</td>
<td>1455</td>
<td>S/. 58.18</td>
<td>S/. 84,647.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo galvanizado estructural</td>
<td>TGE GALV</td>
<td>468</td>
<td>S/. 42.19</td>
<td>S/. 19,742.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo redondo estandar</td>
<td>TRS STD</td>
<td>346</td>
<td>S/. 263.54</td>
<td>S/. 91,186.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo celda</td>
<td>TCED</td>
<td>59</td>
<td>S/. 216.14</td>
<td>S/. 12,752.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Tubos</td>
<td>Tubo redondo electrosoldado</td>
<td>TRE RED</td>
<td>457</td>
<td>S/. 21.02</td>
<td>S/. 9,606.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Barandas estructurales</td>
<td></td>
<td>BAR</td>
<td>771</td>
<td>S/. 290.00</td>
<td>S/. 192,773.00</td>
<td>9.4%</td>
<td>771</td>
</tr>
<tr>
<td>B</td>
<td>Acústicas</td>
<td></td>
<td>ANG</td>
<td>3063</td>
<td>S/. 31.36</td>
<td>S/. 96,067.00</td>
<td>4.7%</td>
<td>3063</td>
</tr>
<tr>
<td>B</td>
<td>Perfiles estructurales</td>
<td></td>
<td>PER</td>
<td>223</td>
<td>S/. 415.44</td>
<td>S/. 92,644.00</td>
<td>4.5%</td>
<td>223</td>
</tr>
<tr>
<td>C</td>
<td>Canales</td>
<td></td>
<td>CAN</td>
<td>1233</td>
<td>S/. 45.26</td>
<td>S/. 55,783.00</td>
<td>2.7%</td>
<td>1233</td>
</tr>
<tr>
<td>C</td>
<td>Platinas</td>
<td></td>
<td>PLAT</td>
<td>1755</td>
<td>S/. 23.11</td>
<td>S/. 40,550.00</td>
<td>2.0%</td>
<td>1755</td>
</tr>
<tr>
<td>C</td>
<td>Barras</td>
<td></td>
<td>BARR</td>
<td>2478</td>
<td>S/. 13.83</td>
<td>S/. 34,282.00</td>
<td>1.7%</td>
<td>2478</td>
</tr>
<tr>
<td>C</td>
<td>Laminas de acero inoxidable estructurales</td>
<td></td>
<td>LAM</td>
<td>79</td>
<td>S/. 287.16</td>
<td>S/. 22,686.00</td>
<td>1.1%</td>
<td>79</td>
</tr>
<tr>
<td>C</td>
<td>Discos</td>
<td></td>
<td>DISC</td>
<td>3780</td>
<td>S/. 5.90</td>
<td>S/. 22,306.00</td>
<td>1.1%</td>
<td>3780</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>38619</td>
<td></td>
<td>S/. 2,045,167.00</td>
<td>92%</td>
<td>38619</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
En el cuadro anterior, se detallan las familias y los tipos de productos dentro de cada una de ellas, en el caso de la familia de planchas y tubos existen 4 y 10 tipos respectivamente. A continuación se observa el resumen de la clasificación ABC.

Tabla 11: Clasificación ABC

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Familia</th>
<th>Ventas</th>
<th>Porcentaje</th>
<th>% Acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Planchas</td>
<td>S/. 553,853.00</td>
<td>27.1%</td>
<td>27.1%</td>
</tr>
<tr>
<td></td>
<td>Otros</td>
<td>S/. 502,580.00</td>
<td>24.6%</td>
<td>51.7%</td>
</tr>
<tr>
<td></td>
<td>Tubos</td>
<td>S/. 431,641.05</td>
<td>21.1%</td>
<td>72.8%</td>
</tr>
<tr>
<td>B</td>
<td>Barandas estructurales</td>
<td>S/. 192,773.00</td>
<td>9.4%</td>
<td>82.2%</td>
</tr>
<tr>
<td></td>
<td>Ángulos</td>
<td>S/. 96,067.00</td>
<td>4.7%</td>
<td>86.9%</td>
</tr>
<tr>
<td></td>
<td>Perfiles estructurales</td>
<td>S/. 92,644.00</td>
<td>4.5%</td>
<td>91.4%</td>
</tr>
<tr>
<td>C</td>
<td>Canales</td>
<td>S/. 55,785.00</td>
<td>2.7%</td>
<td>94.1%</td>
</tr>
<tr>
<td></td>
<td>Platinas</td>
<td>S/. 40,550.00</td>
<td>2.0%</td>
<td>96.1%</td>
</tr>
<tr>
<td></td>
<td>Barras</td>
<td>S/. 34,282.00</td>
<td>1.7%</td>
<td>97.8%</td>
</tr>
<tr>
<td></td>
<td>Láminas de acero inoxidable estructurales</td>
<td>S/. 22,686.00</td>
<td>1.1%</td>
<td>98.9%</td>
</tr>
<tr>
<td></td>
<td>Discos</td>
<td>S/. 22,306.00</td>
<td>1.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>S/. 2,045,167.05</td>
<td>100%</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Mediante la clasificación ABC se obtiene lo siguiente. De las 38619 unidades elaboradas, 3 familias representan el 65.35% del volumen que generan el 72.8% de las ventas totales. Por lo tanto, estas 3 familias están clasificadas dentro del tipo A.

En el tipo B, se encuentran 3 familias que representan el 10.51% del volumen y que generan el 21.4% de las ventas totales.
Por último, en el tipo C se encuentran 4 familias de productos que representan el 24.15% del volumen y generan el 8.6% de las ventas totales.

A continuación, se muestra el gráfico de la clasificación ABC.

Figura 4: Clasificación ABC de las familias

![Gráfico de Clasificación ABC](image)

Fuente: Elaboración propia

En el caso de la categoría “Otros”, esta representa aquellos componentes que conforman unidades especializadas, las cuales están destinadas a proyectos de construcción de gran escala como andamios, estrados de escenarios, escaleras, entre otros; y estos componentes son suministrados por el propio cliente para ser procesados por cualquiera de los servicios ofrecidos por la empresa. Además, el monto obtenido en esta se debe a que son pedidos personalizados, los cuales tienen un mayor valor debido a su magnitud y no son solicitados con frecuencia.
2.2.2. Análisis de la Demanda

Mediante las fórmulas indicadas en el anexo 41 se podrá determinar el coeficiente de variabilidad, el cual permitirá identificar el tipo de demanda para cada producto dentro de las familias con mayor relevancia dentro de la empresa.

Para llevar a cabo el cálculo del coeficiente se utiliza la demanda mensual del año 2015 para el grupo de clasificación A (sin mencionar a la familia « otros » que son proyectos puntuales), la cual se muestra a continuación:

<table>
<thead>
<tr>
<th>Item</th>
<th>ENERO</th>
<th>FEBRERO</th>
<th>MARZO</th>
<th>ABRIL</th>
<th>MAYO</th>
<th>JUNIO</th>
<th>JULIO</th>
<th>AGOSTO</th>
<th>SETIEMBRE</th>
<th>OCTUBRE</th>
<th>NOVIEMBRE</th>
<th>DICIEMBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGALV</td>
<td>1,072</td>
<td>1,008</td>
<td>1,018</td>
<td>1,037</td>
<td>744</td>
<td>1,043</td>
<td>1,081</td>
<td>1,028</td>
<td>1,021</td>
<td>1,064</td>
<td>1,072</td>
<td>858</td>
</tr>
<tr>
<td>PLAC</td>
<td>173</td>
<td>184</td>
<td>104</td>
<td>116</td>
<td>322</td>
<td>478</td>
<td>667</td>
<td>563</td>
<td>510</td>
<td>266</td>
<td>286</td>
<td>229</td>
</tr>
<tr>
<td>PLAC ESTRI</td>
<td>57</td>
<td>36</td>
<td>102</td>
<td>91</td>
<td>146</td>
<td>179</td>
<td>68</td>
<td>226</td>
<td>152</td>
<td>266</td>
<td>234</td>
<td>187</td>
</tr>
<tr>
<td>PLAF</td>
<td>33</td>
<td>38</td>
<td>11</td>
<td>19</td>
<td>26</td>
<td>10</td>
<td>48</td>
<td>16</td>
<td>48</td>
<td>10</td>
<td>56</td>
<td>45</td>
</tr>
<tr>
<td>TAX</td>
<td>19</td>
<td>16</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>TCN</td>
<td>130</td>
<td>180</td>
<td>188</td>
<td>175</td>
<td>151</td>
<td>196</td>
<td>145</td>
<td>169</td>
<td>139</td>
<td>200</td>
<td>185</td>
<td>137</td>
</tr>
<tr>
<td>TCE RED</td>
<td>60</td>
<td>50</td>
<td>86</td>
<td>93</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>84</td>
<td>82</td>
<td>90</td>
<td>81</td>
<td>70</td>
</tr>
<tr>
<td>TER RED</td>
<td>22</td>
<td>25</td>
<td>17</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>22</td>
<td>20</td>
<td>16</td>
<td>22</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>TNR RED</td>
<td>79</td>
<td>86</td>
<td>91</td>
<td>70</td>
<td>63</td>
<td>55</td>
<td>81</td>
<td>83</td>
<td>88</td>
<td>72</td>
<td>63</td>
<td>34</td>
</tr>
<tr>
<td>TRN RED</td>
<td>138</td>
<td>120</td>
<td>125</td>
<td>112</td>
<td>106</td>
<td>140</td>
<td>103</td>
<td>110</td>
<td>125</td>
<td>130</td>
<td>140</td>
<td>106</td>
</tr>
<tr>
<td>TGE GALV</td>
<td>31</td>
<td>40</td>
<td>46</td>
<td>39</td>
<td>36</td>
<td>38</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>39</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>TRS STD</td>
<td>36</td>
<td>30</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>26</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>TCE D</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>TRE RED</td>
<td>36</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>37</td>
<td>36</td>
<td>39</td>
<td>41</td>
<td>43</td>
<td>39</td>
<td>36</td>
<td>27</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Para hallar el coeficiente de variabilidad, se debe calcular el promedio mensual de demanda y la varianza, para finalmente obtener este y con el cual se podrá concluir lo siguiente:

Si el coeficiente de variabilidad es menor a 0.20, representa que la demanda es relativamente estable en todos los periodos analizados. Por ello, su demanda es determinística. Por otro lado, si el coeficiente es mayor o igual a 0.20, esto representa que la demanda es inestable; por lo tanto, la demanda es probabilística. Winston (2004)
De esta manera, el cálculo se muestra a continuación.

Tabla 13: Identificación del tipo de demanda

<table>
<thead>
<tr>
<th>Item</th>
<th>Promedio</th>
<th>Varianza</th>
<th>Coeficiente Variabilidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGALV</td>
<td>1,004</td>
<td>9,281.64</td>
<td>0.0092</td>
<td>Determinístico</td>
</tr>
<tr>
<td>PLAC</td>
<td>333</td>
<td>31,496.74</td>
<td>0.2848</td>
<td>Probabilístico</td>
</tr>
<tr>
<td>PLAC ESTRI</td>
<td>145</td>
<td>5,200.89</td>
<td>0.2462</td>
<td>Probabilístico</td>
</tr>
<tr>
<td>PLAF</td>
<td>30</td>
<td>259.67</td>
<td>0.2885</td>
<td>Probabilístico</td>
</tr>
<tr>
<td>TAX</td>
<td>24</td>
<td>22.52</td>
<td>0.0383</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TCN</td>
<td>166</td>
<td>559.85</td>
<td>0.0203</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TCED</td>
<td>77</td>
<td>143.69</td>
<td>0.0244</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TER REC</td>
<td>20</td>
<td>21.24</td>
<td>0.0536</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TNR REC</td>
<td>72</td>
<td>246.91</td>
<td>0.0475</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TRN RED</td>
<td>121</td>
<td>175.02</td>
<td>0.0119</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TGE GALV</td>
<td>39</td>
<td>15.83</td>
<td>0.0104</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TRS STD</td>
<td>29</td>
<td>16.31</td>
<td>0.0196</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TCED</td>
<td>5</td>
<td>2.24</td>
<td>0.0928</td>
<td>Determinístico</td>
</tr>
<tr>
<td>TRE RED</td>
<td>38</td>
<td>16.58</td>
<td>0.0114</td>
<td>Determinístico</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Dentro de la familia de planchas, planchas galvánicas cuenta con una demanda determinística y existen 3 tipos productos que poseen un tipo de demanda probabilística. Por otro lado, en la familia de tubos, sus 10 tipos de productos cuentan con demanda determinística lo que significa que en esta familia el comportamiento de la demanda se conoce.

Por lo tanto, la demanda de la familia de planchas debe ser pronosticada, ya que su demanda es aleatoria por lo que es necesario llevar un pronóstico de esta el cual se vaya ajustando al comportamiento real y de esta manera se pueda cumplir con los requerimientos del mercado.

2.2.3. Productos no procesados

A continuación se muestra la demanda del año 2015 y se detalla la demanda no atendida en este periodo de tiempo para las familias de planchas y tubos.
Tabla 14: Planchas galvanizadas no procesadas

<table>
<thead>
<tr>
<th>PGALV</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planchas procesadas</td>
<td>1072</td>
<td>1008</td>
<td>1018</td>
<td>1037</td>
<td>744</td>
<td>1043</td>
<td>1081</td>
<td>1028</td>
<td>1021</td>
<td>1064</td>
<td>1072</td>
<td>858</td>
</tr>
<tr>
<td>Planchas no procesadas</td>
<td>56</td>
<td>44</td>
<td>39</td>
<td>68</td>
<td>39</td>
<td>49</td>
<td>50</td>
<td>40</td>
<td>56</td>
<td>66</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>% Planchas no procesadas</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
<td>7%</td>
<td>5%</td>
<td>5%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>4%</td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 15: Planchas laminadas al caliente no procesadas

<table>
<thead>
<tr>
<th>PLAC</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planchas procesadas</td>
<td>173</td>
<td>184</td>
<td>104</td>
<td>116</td>
<td>359</td>
<td>322</td>
<td>478</td>
<td>667</td>
<td>563</td>
<td>510</td>
<td>286</td>
<td>229</td>
</tr>
<tr>
<td>Planchas no procesadas</td>
<td>21</td>
<td>18</td>
<td>14</td>
<td>27</td>
<td>14</td>
<td>18</td>
<td>17</td>
<td>14</td>
<td>20</td>
<td>23</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>% Planchas no procesadas</td>
<td>12%</td>
<td>10%</td>
<td>14%</td>
<td>23%</td>
<td>4%</td>
<td>6%</td>
<td>4%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 16: Planchas estriadas no procesadas

<table>
<thead>
<tr>
<th>PLAC ESTRI</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planchas procesadas</td>
<td>57</td>
<td>36</td>
<td>102</td>
<td>91</td>
<td>146</td>
<td>179</td>
<td>68</td>
<td>226</td>
<td>152</td>
<td>266</td>
<td>234</td>
<td>187</td>
</tr>
<tr>
<td>Planchas no procesadas</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Planchas no procesadas</td>
<td>7.1%</td>
<td>8.4%</td>
<td>3.1%</td>
<td>5.0%</td>
<td>1.8%</td>
<td>6.8%</td>
<td>1.5%</td>
<td>3.5%</td>
<td>2.4%</td>
<td>1.5%</td>
<td>1.6%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 17: Planchas al frío no procesadas

<table>
<thead>
<tr>
<th>PLAF</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planchas procesadas</td>
<td>33</td>
<td>38</td>
<td>11</td>
<td>19</td>
<td>26</td>
<td>10</td>
<td>48</td>
<td>16</td>
<td>48</td>
<td>10</td>
<td>56</td>
<td>45</td>
</tr>
<tr>
<td>Planchas no procesadas</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>% Planchas no procesadas</td>
<td>11%</td>
<td>8%</td>
<td>24%</td>
<td>20%</td>
<td>9%</td>
<td>37%</td>
<td>7%</td>
<td>16%</td>
<td>8%</td>
<td>46%</td>
<td>5%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 18: Tubos de acero inoxidable no procesados

<table>
<thead>
<tr>
<th>TAX</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>19</td>
<td>16</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>5%</td>
<td>0%</td>
<td>6%</td>
<td>4%</td>
<td>4%</td>
<td>0%</td>
<td>0%</td>
<td>4%</td>
<td>5%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 19: Tubos cuadrados negros no procesados

<table>
<thead>
<tr>
<th>TCN</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>130</td>
<td>180</td>
<td>188</td>
<td>175</td>
<td>151</td>
<td>196</td>
<td>145</td>
<td>169</td>
<td>139</td>
<td>200</td>
<td>185</td>
<td>137</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>0%</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 20: Tubos cuadrados electrosoldados no procesados

<table>
<thead>
<tr>
<th>TCED</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>60</td>
<td>50</td>
<td>86</td>
<td>93</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>84</td>
<td>82</td>
<td>90</td>
<td>81</td>
<td>70</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>2%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
<td>3%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 21: Tubos electrosoldados rectangulares no procesados

<table>
<thead>
<tr>
<th>TER REC</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>22</td>
<td>25</td>
<td>17</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>22</td>
<td>20</td>
<td>16</td>
<td>22</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>0%</td>
<td>0%</td>
<td>6%</td>
<td>5%</td>
<td>0%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 22: Tubos negros rectangulares no procesados

<table>
<thead>
<tr>
<th>TNR REC</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>79</td>
<td>86</td>
<td>91</td>
<td>70</td>
<td>63</td>
<td>55</td>
<td>81</td>
<td>83</td>
<td>88</td>
<td>72</td>
<td>63</td>
<td>34</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>4%</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 23: Tubos redondos negros no procesados

<table>
<thead>
<tr>
<th>TRN RED</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>138</td>
<td>120</td>
<td>125</td>
<td>112</td>
<td>106</td>
<td>140</td>
<td>103</td>
<td>110</td>
<td>125</td>
<td>130</td>
<td>140</td>
<td>106</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 24: Tubos galvanizados estructurales no procesados

<table>
<thead>
<tr>
<th>TGE GALV</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>31</td>
<td>40</td>
<td>46</td>
<td>39</td>
<td>36</td>
<td>38</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>39</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>3%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>3%</td>
<td>0%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 25: Tubos redondos estándares no procesados

<table>
<thead>
<tr>
<th>TRS STD</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>36</td>
<td>30</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>26</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>3%</td>
<td>0%</td>
<td>8%</td>
<td>0%</td>
<td>5%</td>
<td>4%</td>
<td>3%</td>
<td>6%</td>
<td>3%</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 26: Tubos cédula no procesados

<table>
<thead>
<tr>
<th>TCED</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>17%</td>
<td>14%</td>
<td>0%</td>
<td>17%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 27: Tubos redondos electrosoldados no procesados

<table>
<thead>
<tr>
<th>TRE RED</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos procesados</td>
<td>36</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>37</td>
<td>36</td>
<td>39</td>
<td>41</td>
<td>43</td>
<td>39</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>Tubos no procesados</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% Tubos no procesados</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En cada uno de los cuadros se muestra la cantidad de planchas y tubos según corresponda no procesados mensualmente, estos se convirtieron en la demanda no atendida por la empresa. Asimismo, mediante este detalle se logra identificar que la familia más crítica es la de planchas ya que posee mayor cantidad de unidades no atendidas y estos eventos ocurrieron mensualmente a diferencia de la familia de tubos donde sus unidades no atendidas son mínimas y en ocasiones no ocurrieron estos eventos. También, es importante resaltar que la demanda de planchas es mayor a la de tubos, y sumado a que la demanda es aleatoria el control de las mismas es más complejo.

Por lo tanto, mediante el análisis anterior, el presente proyecto estará basado en la familia de planchas, la misma que fue consultada y aprobada por el dueño de la empresa.
2.2.4. Problema

Una oportunidad de mejora se determina a partir de los antecedentes en las ventas, ya que existen ventas perdidas que se generan por un pedido cancelado o no contar con unidades disponibles para su venta. Por ello, es importante identificar el problema principal por el cual están ocurriendo estas pérdidas.

A continuación se muestra una matriz de impacto en la cual se listan los posibles problemas, y se seleccionan algunos criterios con la finalidad de realizar la elección del problema principal.

Tabla 28: Matriz de selección del problema principal

<table>
<thead>
<tr>
<th>Problemas u oportunidades de mejora</th>
<th>Impacto en la satisfacción de clientes Peso: 45%</th>
<th>Desperdicio en costos Peso: 20%</th>
<th>Complejidad de solución Peso: 10%</th>
<th>Alineamiento con los objetivos de la dirección Peso: 25%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productos defectuosos</td>
<td>10*0.45=4.5</td>
<td>10*0.20=2</td>
<td>10*0.10=1</td>
<td>30*0.25=7.5</td>
<td>15</td>
</tr>
<tr>
<td>Planificación y control de producción inciertos</td>
<td>90*0.45=40.5</td>
<td>10*0.20=2</td>
<td>30*0.10=3</td>
<td>90*0.25=22.5</td>
<td>68</td>
</tr>
<tr>
<td>Distribución inadecuada</td>
<td>0*0.45=0</td>
<td>30*0.20=6</td>
<td>30*0.10=3</td>
<td>30*0.25=7.5</td>
<td>16.5</td>
</tr>
<tr>
<td>Fallas en las máquinas</td>
<td>13*0.45=13.5</td>
<td>10*0.20=2</td>
<td>10*0.10=1</td>
<td>30*0.25=7.5</td>
<td>24</td>
</tr>
</tbody>
</table>

Fuente: Bonilla y otros (2014) - Elaboración propia

Tabla 29: Escala de impacto

<table>
<thead>
<tr>
<th>Valor</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nada</td>
</tr>
<tr>
<td>10</td>
<td>poco</td>
</tr>
<tr>
<td>30</td>
<td>regular</td>
</tr>
<tr>
<td>90</td>
<td>mucho</td>
</tr>
</tbody>
</table>

Fuente: Bonilla y otros (2014)
Elaboración propia

Con los resultados obtenidos, se observa que el problema principal, el cual debe ser resuelto, es planificación y control de producción inciertos.
2.2.5. Impacto del problema

Se determinó que existen registros de ventas perdidas en la familia de planchas que representan un costo de oportunidad para la empresa, ya que el cliente puede optar por comprar los mismos productos a empresas cercanas a Fierrosol S.A.C., las cuales están localizadas en la misma avenida donde se encuentra la empresa en estudio.

A continuación, se muestran las ventas y ventas perdidas del año 2015, las cuales están consolidadas por tipo de plancha en la familia previamente mencionada.

Figura 5: Ventas y ventas perdidas del año 2015 en plancha galvanizada

![Diagrama de ventas y ventas perdidas mensuales en plancha galvanizada]

Fuente: Elaboración propia
Figura 6: Ventas y ventas perdidas del año 2015 en plancha laminada al caliente

<table>
<thead>
<tr>
<th>Mes</th>
<th>Ventas Perdidas</th>
<th>Ventas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diciembre</td>
<td>S/. 1,136</td>
<td>S/. 15,849</td>
</tr>
<tr>
<td>Noviembre</td>
<td>S/. 935</td>
<td>S/. 19,457</td>
</tr>
<tr>
<td>Octubre</td>
<td>S/. 1,480</td>
<td></td>
</tr>
<tr>
<td>Septiembre</td>
<td>S/. 1,288</td>
<td></td>
</tr>
<tr>
<td>Agosto</td>
<td>S/. 894</td>
<td></td>
</tr>
<tr>
<td>Julio</td>
<td>S/. 1,134</td>
<td>S/. 16,321</td>
</tr>
<tr>
<td>Junio</td>
<td>S/. 1,189</td>
<td>S/. 19,906</td>
</tr>
<tr>
<td>Mayo</td>
<td>S/. 928</td>
<td>S/. 17,125</td>
</tr>
<tr>
<td>Abril</td>
<td>S/. 1,744</td>
<td></td>
</tr>
<tr>
<td>Marzo</td>
<td>S/. 934</td>
<td>S/. 17,238</td>
</tr>
<tr>
<td>Febrero</td>
<td>S/. 1,153</td>
<td></td>
</tr>
<tr>
<td>Enero</td>
<td>S/. 1,402</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Figura 7: Ventas y ventas perdidas del año 2015 en plancha estriada

<table>
<thead>
<tr>
<th>Mes</th>
<th>Ventas Perdidas</th>
<th>Ventas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diciembre</td>
<td>S/. 174</td>
<td>S/. 3,046</td>
</tr>
<tr>
<td>Noviembre</td>
<td>S/. 204</td>
<td>S/. 3,739</td>
</tr>
<tr>
<td>Octubre</td>
<td>S/. 382</td>
<td>S/. 4,774</td>
</tr>
<tr>
<td>Septiembre</td>
<td>S/. 314</td>
<td>S/. 4,887</td>
</tr>
<tr>
<td>Agosto</td>
<td>S/. 195</td>
<td>S/. 4,191</td>
</tr>
<tr>
<td>Julio</td>
<td>S/. 275</td>
<td>S/. 3,137</td>
</tr>
<tr>
<td>Junio</td>
<td>S/. 310</td>
<td>S/. 3,826</td>
</tr>
<tr>
<td>Mayo</td>
<td>S/. 159</td>
<td>S/. 3,291</td>
</tr>
<tr>
<td>Abril</td>
<td>S/. 272</td>
<td></td>
</tr>
<tr>
<td>Marzo</td>
<td>S/. 190</td>
<td>S/. 6,651</td>
</tr>
<tr>
<td>Febrero</td>
<td>S/. 179</td>
<td>S/. 4,337</td>
</tr>
<tr>
<td>Enero</td>
<td>S/. 239</td>
<td>S/. 5,219</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Finalmente, estas ventas perdidas representan un costo de oportunidad para la empresa, ya que de haber podido concretarlas, los ingresos hubiesen sido mayores.

Por lo tanto, a continuación se muestra el resumen de las ventas en esta familia, y lo que hubiese representado cumplir con las ventas perdidas.

Tabla 30: Ventas 2015 en familia de planchas

<table>
<thead>
<tr>
<th>Tipo de planchas</th>
<th>Código</th>
<th>Ventas 2015</th>
<th>Ventas Perdidas</th>
<th>Ventas Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plancha galvanizada</td>
<td>PGALV</td>
<td>S/. 137,699</td>
<td>S/. 6,816</td>
<td>S/. 144,515</td>
</tr>
<tr>
<td>Plancha laminada al cliente</td>
<td>PLAC</td>
<td>S/. 262,305</td>
<td>S/. 14,217</td>
<td>S/. 276,522</td>
</tr>
<tr>
<td>Plancha estriada</td>
<td>PLAC ESTRI</td>
<td>S/. 50,409</td>
<td>S/. 2,893</td>
<td>S/. 53,302</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>S/. 553,853</td>
<td>S/. 29,471</td>
<td>S/. 583,324</td>
</tr>
<tr>
<td>PORCENTAJE</td>
<td></td>
<td>94.95%</td>
<td>5.05%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Por medio de esta tabla se observa aproximadamente un 5% de ventas perdidas respecto a las ventas totales generadas en el año 2015 en la familia de planchas.

Esta pérdida representa un costo de oportunidad; por lo tanto, el gerente general al observar el monto consolidado, reconoció la importancia de planificar sus actividades y de esta manera, solicitó la implementación de un proceso que le permita planificar su producción con la finalidad de mitigar las ventas perdidas en la familia de planchas, puesto que esta se produce por el desabastecimiento de productos que genera, además, la insatisfacción del cliente.

El impacto dentro de las utilidades de la empresa está reflejado en el costo de oportunidad, ya que de no haber generado ventas perdidas, los ingresos hubiesen incrementado ocasionando que las utilidades también sean mayores.
2.2.6. Análisis de causas

Se realizó un diagrama de Ishikawa, con la finalidad de analizar las causas del problema.

Figura 9: Diagrama de Ishikawa
Una vez identificadas las posibles causas del problema, es importante definir cuál es la causa raíz del problema. Para ello es necesario analizar la criticidad de las causas observadas en el diagrama de Ishikawa.

A continuación se muestra la evaluación de impacto e frecuencia de cada una de las causas.

Tabla 31: Análisis de criticidad de las causas raíz

<table>
<thead>
<tr>
<th>Causa</th>
<th>Frecuencia</th>
<th>Impacto</th>
<th>Efecto (F*I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descontrol en la atención de pedidos</td>
<td>5</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>No hay control de existencias</td>
<td>5</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Falta de material</td>
<td>5</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>No existe análisis de la demanda</td>
<td>3</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>Descontrol en los tiempos de entrega de pedidos</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Falla en máquinas</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Desorden en la zona de producción</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Suciedad en las estaciones de trabajo</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>No existen tareas definidas entre los operarios</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Personal desmotivado</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tiempo de set up prolongado</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Bonilla y otros (2014 - Elaboración propia)

Tabla 32: Frecuencia

<table>
<thead>
<tr>
<th>Frecuencia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy frecuente</td>
<td>5</td>
</tr>
<tr>
<td>Frecuente</td>
<td>3</td>
</tr>
<tr>
<td>Poco frecuente</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Bonilla y otros (2014)
Elaboración propia

Tabla 33: Impacto

<table>
<thead>
<tr>
<th>Impacto</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alto impacto</td>
<td>12</td>
</tr>
<tr>
<td>Alto impacto</td>
<td>9</td>
</tr>
<tr>
<td>Impacto medio</td>
<td>3</td>
</tr>
<tr>
<td>Bajo impacto</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Bonilla y otros (2014)
Elaboración propia
Con las puntuaciones conseguidas para cada causa listada, se elabora el siguiente diagrama.

Figura 10: Diagrama de Pareto

Con el resultado obtenido, se define que las causas principales del problema están clasificadas en el Método y Material. Estas son las siguientes.

Tabla 34: Clasificación de las causas raíces

<table>
<thead>
<tr>
<th>Causas principales</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descontrol en la atención de pedidos</td>
<td>Método</td>
</tr>
<tr>
<td>No hay control de existencias</td>
<td>Método</td>
</tr>
<tr>
<td>No existe análisis de la demanda</td>
<td>Método</td>
</tr>
<tr>
<td>Falta de material</td>
<td>Material</td>
</tr>
</tbody>
</table>

Por lo tanto, la alternativa a proponer para solucionar estas causas raíces, debe estar enfocada con la atención adecuada de los pedidos, tener un control de existencias que permita hacer la reposición en el momento oportuno para evitar quedarse sin material, y estructurar el método de trabajo en base al comportamiento de la demanda.

Por otro lado, para comprender más a detalle las causas y efectos del problema. Se elaboró un árbol de causas y efectos:
Con el presente árbol, se puede concluir que el inadecuado control a la atención de pedidos se debe a que estos no siguen un correcto orden de atención, pues no son procesados según el orden de llegada.

Existe descontrol de las existencias, puesto que los productos para la venta directa están siendo consumidos continuamente, pero no se lleva un control de esto lo que conlleva a una incorrecta
reposición a los productos para la venta. Finalmente, se presenta desabastecimiento de planchas para producción, ello genera que los pedidos no se completen en las fechas pactadas.

Por otro lado, los efectos del problema son principalmente las ventas perdidas que terminan impactando directamente en los ingresos de la empresa. También, existe pérdida de clientes que optan por la competencia para cumplir sus requerimientos. Por último, un efecto importante de no contar con un proceso de planificación y control de producción es que se estiman posibles fechas de entrega que finalmente no son cumplidas, lo que genera reclamos por los clientes y en la mayoría de casos estos se convierten en una venta perdida.

Por lo tanto, se identifica una necesidad por contar con un proceso que permita planificar producción, programarla y controlarla; por ello, a solicitud del dueño, el proyecto a realizar consistirá en la implementación del proceso de planificación, programación y control de la producción para la familia de planchas por medio del cual se espera atender la demanda de los clientes para reducir las ventas perdidas.

Una vez identificada la necesidad de la empresa y por solicitud del dueño, se diseñará un proceso de Planificación, Programación y Control de producción el cual será implementado en esta.

Por ello, para llevar a cabo el desarrollo de todo este proyecto cuya solicitud fue dada por el cliente, en este caso el dueño de la empresa en estudio, se decidió utilizar la guía del PMBOK. Debido a que al tratarse de un proyecto que involucra la implementación y ejecución de la propuesta, los cambios están presentes durante todo el ciclo de este, pues las actividades y tiempos definidos inicialmente pueden ser afectados, provocando que se adelanten o retracen dependiendo de la situación de las partes involucradas.

Esta es una de las razones principales por la cual la aplicación de esta guía es muy importante, ya que otorga la flexibilidad para ajustar el plan del proyecto a la realidad por la cual se atraviesa. Asimismo, el PMBOK otorga una gran cantidad de procesos y herramientas que permiten hacer un adecuado seguimiento al desarrollo de este proyecto de tesis, puesto que desde el inicio se elabora el acta de constitución del proyecto en el cual la empresa y los gestores de este se comprometen a cumplir con un objetivo en común; también, se definen a todos los involucrados, se dimensionan las actividades, tiempo y recursos. De esta manera, el control y seguimiento al
proyecto permanece durante cada una de las actividades que se realizan en este, contribuyendo a cumplir con los resultados esperados.

2.3. Identificación de Interesados

Para iniciar el plan del proyecto para el sistema de programación y control de producción es importante identificar a los interesados en este, con la finalidad de recopilar la información referente a sus intereses, inquietudes y participación respecto al proyecto. Por ello, se registrarán a los interesados para luego elaborar una matriz de abordaje.

2.3.1. Registro de interesados

Se elaboró un registro de interesados para presentar a todas las personas de la empresa Fierrosol S.A.C. que estarán involucradas en el proyecto de alguna manera. En la siguiente tabla, se muestra el registro elaborado luego de entrevistar a cada uno de los interesados en el cual están detallados el rol, área, intereses, entre otros de cada una de las personas identificadas.
Tabla 35: Registro de Interesados

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Rol</th>
<th>Área</th>
<th>Intereses</th>
<th>Nivel de conocimiento</th>
<th>Expectativa</th>
<th>Nivel de influencia</th>
</tr>
</thead>
</table>
| Roberto Angulo Canales | Gerente General| Alta Dirección| 1. Incrementar margen de ganancia de la empresa
2. Generar una ventaja competitiva respecto al mercado
3. Mantener al personal satisfecho | Medio | Muy Alto | Muy Alto |
| Guillermo Zúñiga Escalante| Contador | Contabilidad | 1. Optimizar el balance de ingresos y salidas de volumen
2. Optimizar el balance de ingresos y salidas financieras | Bajo | Muy Alta | Baja |
| Maximiliana Guzmán Cóndor| Encargada Logística| Logística | 1. Conocer el nivel de existencias de planchas
2. Conocer el punto de reposición de inventario
3. Contar con un calendario de compras | Bajo | Muy Alta | Baja |
| Luis Huisa Ramos | Maestro de Operaciones | Operaciones | 1. Programar y controlar la producción semanalmente
2. Distribuir la carga de trabajo según la demanda a los operadores
3. Controlar y monitorear las actividades diarias de los operadores
4. Conocer y utilizar órdenes de producción
5. Conocer el nivel de existencias de planchas | Medio | Muy Alta | Alto |
| Alfonso Pizarro Landeo | Encargado de Almacén| Almacén | 1. Controlar los ingresos y salidas del almacén
2. Conocer el nivel de existencias de planchas | Muy Bajo | Alta | Muy Baja |

Fuente: The Project Management Institute 2008
Elaboración propia
2.3.2. Matriz de abordaje

Una vez identificado los intereses del personal entrevistado, se realizará una matriz de abordaje mediante la cual serán evaluados los intereses, identificados en la entrevista, y de esta manera determinar las estrategias que permitan incrementar el apoyo al personal para que sus intereses no se vean afectados durante el desarrollo del proyecto.
Tabla 36: Matriz de abordaje

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Inquietudes en el proyecto</th>
<th>Evaluación del impacto</th>
<th>Estrategias potenciales para obtener apoyo o reducir obstáculos</th>
</tr>
</thead>
</table>
| Roberto Angulo Canales | 1. La implementación del Sistema de PCP no interfiera con las actividades diarias de la empresa
2. Implementación del proyecto no sea costoso | Alto | 1. Se elaborará un cronograma detallado de cada actividad a realizar el cual será presentado al gerente para que observe el esquema del proyecto.
2. Se conversará y estimará los costos totales del proyecto al gerente, los cuales no son altos debido a que son cambios que no implican compra de equipos o contratación de personal. |
| Guillermo Zúñiga Escalante | Temor a llamadas de atención por irregularidades observadas en el ingreso de datos en el software utilizado | Bajo | Se buscará impulsar valores en la empresa durante el desarrollo del proyecto, para que los trabajadores confíen en él y asimismo, establecer mejores relaciones con los demás. |
| Maximiliana Guzmán Cón dor | Temor a llamadas de atención por irregularidades observadas en el ingreso de datos en el software utilizado | Bajo | Se buscará impulsar valores en la empresa durante el desarrollo del proyecto, para que los trabajadores confíen en él y asimismo, establecer mejores relaciones con los demás. |
| Luis Huisa Ramos | 1. La implementación del Sistema de PCP no interfiera con las actividades diarias de la empresa
2. Temor a llamadas de atención por toma de medidas correctivas por mala programación | Alto | 1. Se elaborará un cronograma detallado de cada actividad a realizar el cual será presentado al gerente para que observe el esquema del proyecto.
2. Se buscará impulsar valores en la empresa durante el desarrollo del proyecto, para que los trabajadores confíen en él y asimismo, establecer mejores relaciones con los demás. |
| Alfonso Pizarro Landeo | Temor a llamadas de atención por no contar con registros de existencias para el control de planchas en almacén | Bajo | Se buscará impulsar valores en la empresa durante el desarrollo del proyecto, para que los trabajadores confíen en él y asimismo, establecer mejores relaciones con los demás. |

Fuente: The Project Management Institute 2008
Elaboración propia
2.4. Gestión del Alcance

En esta área de conocimiento, se especifica toda la información y trabajo necesario para completar el proyecto. Por ello, serán definidos los requisitos, luego el objetivo del proyecto, para posteriormente describir el alcance de este. Después, se establecerán las restricciones para el alcance del proyecto previamente definido. Finalmente, será mostrada la Estructura de Desglose de Trabajo (EDT).

2.4.1. Requisitos

Para realizar la recopilación de requisitos, se llevaron a cabo entrevistas a los interesados identificados previamente. En los anexos número 1 al 5 se encuentran detalladas las entrevistas realizadas a cada interesado.

Por medio de las entrevistas se obtuvo información de utilidad para la identificación de las necesidades de los interesados. Una vez identificadas estas, se procede a definir los requisitos del proyecto, los cuales serán especificados en la matriz mostrada a continuación. En esta se analiza cada uno a detalle; de manera que una vez finalizado el proyecto se pueda medir cuál es el cumplimiento obtenido para cada requisito.
MATRIZ DE TRAZABILIDAD DE REQUISITOS

Nombre del Proyecto: Implementación de un Sistema de Planificación, Programación y Control

Objetivo general del proyecto: Reducir el nivel de ventas perdidas

<table>
<thead>
<tr>
<th>Identificación</th>
<th>Descripción de Requisitos</th>
<th>Necesidades de Negocio, Oportunidades, Metas y Objetivos</th>
<th>% Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>El requisito surge debido al nivel de entregas retrasadas al cliente, generando insatisfacción del mismo.</td>
<td>Se busca cumplir con la fecha de entrega acordada inicialmente con el cliente</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>El requisito surge debido al desconocimiento de las órdenes de producción que son prioritarias semanalmente.</td>
<td>Establecer objetivos de producción semanalmente y controlar su cumplimiento</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>El requisito surge debido al desconocimiento del nivel de existencias diario de productos.</td>
<td>Mantener informados a los responsables de cada área sobre el nivel de existencias diario en la empresa</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>El requisito surge debido a la necesidad de saber cuándo y cuántas planchas comprar de acuerdo al nivel de demanda.</td>
<td>Poseer un calendario de compras donde se especifique la cantidad adecuada de planchas a comprar</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>El requisito surge debido a que la empresa no cuenta con registros en el área de Operaciones que le permita llevar un control diario</td>
<td>Controlar la producción diariamente apoyada en formatos</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>El requisito surge debido a la estimación de las compras y dirección en el área de Operaciones de una manera empírica</td>
<td>Contar con una hoja de cálculo que permita optimizar la programación y control de la producción de planchas</td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>El requisito surge debido al costo de oportunidad perdido por no contar con el producto disponible para la venta</td>
<td>Disponibilidad de planchas para la puesta en venta de acuerdo a la demanda</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: The Project Management Institute 2013
Elaboración propia
2.4.2. Objetivo

Diseñar e implementar un sistema de Planificación, Programación y Control de la producción que permita llevar a cabo la producción de planchas de manera controlada para poder cumplir con la demanda y reducir el nivel de ventas perdidas.

2.4.3. Alcance

El proyecto tiene como alcance desarrollar plantillas para establecer un sistema que permita a la empresa planificar su producción y llevar un control adecuado de compras e inventarios. Para ello, las actividades del proyecto se llevarán a cabo en todas las instalaciones de la empresa Fierrosol S.A.C. sin interrumpir el trabajo diario de los trabajadores.

El área de implementación del proyecto es el de operaciones; no se implementarán sistemas adicionales en otras áreas.

2.4.4. Restricciones

Las restricciones identificadas del proyecto están definidas a continuación:

<table>
<thead>
<tr>
<th>Clase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo</td>
<td>No se incurrirán en gastos adicionales como compra de materiales, maquinaria o contratación de personal.</td>
</tr>
<tr>
<td>Recursos Humanos</td>
<td>Se requiere el compromiso de todo el personal involucrado en el proyecto de implementación.</td>
</tr>
<tr>
<td>Tiempo</td>
<td>El proyecto deberá regirse estrictamente por las actividades mencionadas en el cronograma debido al ciclo de vida establecido del proyecto.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

2.4.5. EDT

A continuación, se muestra la estructura de Desglose de Trabajo (EDT) del proyecto, el cual consta de 4 fases, 12 entregables y 26 paquetes de trabajo. A partir de la EDT, se establecerán las actividades del proyecto.
Figura 12: Estructura de Desglose de Trabajo del proyecto de implementación

Fuente: Elaboración propia
2.5. Gestión del Tiempo

En base a la EDT planteada, se establecerá el tiempo para la finalización del proyecto. Por ello, se definirán las actividades necesarias para llevar a cabo el proyecto de implementación, y una vez definidas serán secuenciadas para determinar la relación de una con la otra. También, estas requieren de ciertos recursos para su realización por lo que serán estimados los necesarios para cada actividad. De la misma manera, es necesario establecer la duración estimada para el cumplimiento de cada actividad.

2.5.1. Actividades del proyecto

Para el plan del proyecto es necesario determinar las actividades a realizar para desarrollar los entregables del proyecto; por ello, se han definido 54 actividades. Estas están divididas en 26 paquetes de trabajo del proyecto, los cuales son los siguientes:

Tabla 39: Lista de Paquetes de trabajo del proyecto

<table>
<thead>
<tr>
<th>Desarrollo de acta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registro de interesados</td>
</tr>
<tr>
<td>Matriz de abordaje</td>
</tr>
<tr>
<td>Documentación de Requisitos</td>
</tr>
<tr>
<td>Matriz de Trazabilidad</td>
</tr>
<tr>
<td>Desarrollo del alcance</td>
</tr>
<tr>
<td>Tabla de Actividades</td>
</tr>
<tr>
<td>Estimación de recursos y duración</td>
</tr>
<tr>
<td>Desarrollo de cronograma</td>
</tr>
<tr>
<td>Organigrama</td>
</tr>
<tr>
<td>Roles y responsabilidad</td>
</tr>
<tr>
<td>Identificación de riesgos</td>
</tr>
<tr>
<td>Análisis cualitativo de riesgos</td>
</tr>
<tr>
<td>Desarrollo de presupuesto</td>
</tr>
<tr>
<td>Plan de comunicaciones</td>
</tr>
<tr>
<td>Plan de recursos productivos</td>
</tr>
<tr>
<td>Inventarios</td>
</tr>
<tr>
<td>Hoja de requerimientos</td>
</tr>
<tr>
<td>Indicadores</td>
</tr>
<tr>
<td>Excel de Operaciones</td>
</tr>
<tr>
<td>Capacitación</td>
</tr>
<tr>
<td>Ejecución</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Evaluación de resultados</td>
</tr>
<tr>
<td>Puesta en marcha</td>
</tr>
<tr>
<td>Validación</td>
</tr>
</tbody>
</table>
Desarrollo del documento de cierre

Fuente: Elaboración propia

Cada paquete de trabajo corresponde a cierto entregable del proyecto tal como se muestra en la EDT, y cada uno de estos entregables corresponde a cierta fase del proyecto, que son el inicio, planificación, ejecución, y cierre.

Seguidamente, por medio de la siguiente tabla se mostrarán las actividades a desarrollar para realizar la implementación del sistema propuesto para planchas en la empresa.

Asimismo, se detallará la secuencia de cada una de las actividades.

<table>
<thead>
<tr>
<th>Código</th>
<th>Actividad</th>
<th>Predecesora</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inicio</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Project Charter</td>
<td></td>
</tr>
<tr>
<td>1.1.</td>
<td>Desarrollo de acta</td>
<td></td>
</tr>
<tr>
<td>1.1.1.</td>
<td>Definir enunciado del proyecto</td>
<td>-</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Definir caso de negocio</td>
<td>1.1.1.</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Definir factores ambientales de la empresa</td>
<td>1.1.2.</td>
</tr>
<tr>
<td>1.1.4.</td>
<td>Definir activos de los procesos de la organización</td>
<td>1.1.3.</td>
</tr>
<tr>
<td>1.1.5.</td>
<td>Elaborar acta constitucional del proyecto</td>
<td>1.1.4.</td>
</tr>
<tr>
<td>2.</td>
<td>Interesados</td>
<td></td>
</tr>
<tr>
<td>2.1.</td>
<td>Registro de interesados</td>
<td></td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Identificar interesados</td>
<td>-</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Elaborar registro de interesados</td>
<td>2.1.1.</td>
</tr>
<tr>
<td>2.2.</td>
<td>Matriz de abordaje</td>
<td></td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Identificar impacto de cada interesado</td>
<td>2.1.2.</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Establecer estrategia de gestión de los interesados</td>
<td>2.2.1.</td>
</tr>
<tr>
<td>B</td>
<td>Planificación</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Requisitos</td>
<td></td>
</tr>
<tr>
<td>3.1.</td>
<td>Documentación de Requisitos</td>
<td></td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Elaborar encuestas</td>
<td>-</td>
</tr>
<tr>
<td>3.1.2.</td>
<td>Encuestar a los interesados</td>
<td>3.1.1.</td>
</tr>
<tr>
<td>3.1.3.</td>
<td>Recopilar requisitos de los interesados</td>
<td>3.1.2.</td>
</tr>
<tr>
<td>3.1.4.</td>
<td>Documentar requisitos</td>
<td>3.1.3.</td>
</tr>
<tr>
<td>3.2.</td>
<td>Matriz de trazabilidad</td>
<td></td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Elaborar matriz de trazabilidad</td>
<td>3.1.4.</td>
</tr>
<tr>
<td>4.</td>
<td>Alcance</td>
<td></td>
</tr>
<tr>
<td>4.1.</td>
<td>Desarrollo del alcance</td>
<td></td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Definir objetivos</td>
<td>-</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Definir el alcance</td>
<td>4.1.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Definir restricciones</td>
<td>4.1.2.</td>
</tr>
<tr>
<td>4.1.4.</td>
<td>Elaborar registro de alcance</td>
<td>4.1.3.</td>
</tr>
<tr>
<td>5.</td>
<td>Cronograma</td>
<td></td>
</tr>
<tr>
<td>5.1.</td>
<td>Tabla de Actividades</td>
<td></td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Definir actividades</td>
<td>-</td>
</tr>
<tr>
<td>5.1.2.</td>
<td>Secuenciar actividades</td>
<td>5.1.1.</td>
</tr>
<tr>
<td>5.2.</td>
<td>Estimación de recursos y duración</td>
<td></td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Estimar recursos para las actividades</td>
<td>5.1.2.</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Estimar duración de las actividades</td>
<td>5.2.1.</td>
</tr>
<tr>
<td>5.3.</td>
<td>Desarrollo de cronograma</td>
<td></td>
</tr>
<tr>
<td>5.3.1.</td>
<td>Elaborar cronograma de hitos</td>
<td>5.2.2.</td>
</tr>
<tr>
<td>6.</td>
<td>Recursos Humanos</td>
<td></td>
</tr>
<tr>
<td>6.1.</td>
<td>Organigrama</td>
<td></td>
</tr>
<tr>
<td>6.1.1.</td>
<td>Elaborar organigrama jerárquico</td>
<td>-</td>
</tr>
<tr>
<td>6.2.</td>
<td>Roles y responsabilidad</td>
<td></td>
</tr>
<tr>
<td>6.2.1.</td>
<td>Equipo del proyecto</td>
<td>-</td>
</tr>
<tr>
<td>6.2.2.</td>
<td>Elaborar diagrama matricial</td>
<td>6.2.1.</td>
</tr>
<tr>
<td>7.</td>
<td>Riesgos</td>
<td></td>
</tr>
<tr>
<td>7.1.</td>
<td>Identificación de riesgos</td>
<td></td>
</tr>
<tr>
<td>7.1.1.</td>
<td>Identificar riesgos</td>
<td>5.2.2.</td>
</tr>
<tr>
<td>7.1.2.</td>
<td>Elaborar matriz de riesgos</td>
<td>7.1.1.</td>
</tr>
<tr>
<td>7.2.</td>
<td>Análisis cualitativo de riesgos</td>
<td></td>
</tr>
<tr>
<td>7.2.1.</td>
<td>Elaborar matriz de probabilidad e impacto</td>
<td>7.1.2.</td>
</tr>
<tr>
<td>8.</td>
<td>Presupuesto</td>
<td></td>
</tr>
<tr>
<td>8.1.</td>
<td>Desarrollo de presupuesto</td>
<td></td>
</tr>
<tr>
<td>8.1.1.</td>
<td>Elaborar presupuesto</td>
<td>5.2.2.</td>
</tr>
<tr>
<td>9.</td>
<td>Comunicaciones</td>
<td></td>
</tr>
<tr>
<td>9.1.</td>
<td>Plan de comunicaciones</td>
<td></td>
</tr>
<tr>
<td>9.1.1.</td>
<td>Elaborar plan de comunicaciones</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>Ejecución</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Diseño</td>
<td></td>
</tr>
<tr>
<td>10.1.</td>
<td>Plan de recursos productivos</td>
<td></td>
</tr>
<tr>
<td>10.1.1.</td>
<td>Establecer cantidad de hombres requeridos</td>
<td>-</td>
</tr>
<tr>
<td>10.1.2.</td>
<td>Establecer cantidad de máquinas requeridas</td>
<td>10.1.1.</td>
</tr>
<tr>
<td>10.2</td>
<td>Inventarios</td>
<td></td>
</tr>
<tr>
<td>10.2.1.</td>
<td>Establecer inventario inicial</td>
<td>-</td>
</tr>
<tr>
<td>10.2.2.</td>
<td>Establecer inventario mínimo para reposición</td>
<td>10.2.1.</td>
</tr>
<tr>
<td>10.3</td>
<td>Hoja de requerimientos</td>
<td></td>
</tr>
<tr>
<td>10.3.1.</td>
<td>Establecer parámetros para hoja de requerimientos de producción</td>
<td>-</td>
</tr>
<tr>
<td>10.4.</td>
<td>Indicadores</td>
<td></td>
</tr>
<tr>
<td>10.4.1.</td>
<td>Establecer indicadores de producción</td>
<td>-</td>
</tr>
<tr>
<td>10.5.</td>
<td>Excel de Operaciones</td>
<td></td>
</tr>
<tr>
<td>10.5.1.</td>
<td>Diseñar hoja de cálculo para Plan de recursos productivos</td>
<td>10.3.1.</td>
</tr>
<tr>
<td>10.5.2.</td>
<td>Diseñar hoja de cálculo para Inventarios</td>
<td>-</td>
</tr>
<tr>
<td>10.5.3.</td>
<td>Diseñar hoja de cálculo para Hoja de requerimientos</td>
<td>-</td>
</tr>
</tbody>
</table>
2.5.2. Estimación de recursos

Por medio de la tabla expuesta a continuación, serán asignados los recursos a cada actividad previamente descrita. La estimación de los recursos fue realizada con el asesoramiento de expertos, y cabe resaltar que, por tratarse de un proyecto de implementación de un sistema de planificación, programación y control de producción en una pequeña empresa, los gastos por los recursos a utilizar como es el caso de cuadernillos y hojas bond serán adquiridos por el grupo del proyecto, conformado por los dos integrantes del proyecto de tesis. Por otro lado, las laptops son recursos con los que contamos; también, la empresa cuenta con computadoras por lo que no implica una adquisición para ambas partes.
<table>
<thead>
<tr>
<th>Código</th>
<th>Actividad</th>
<th>Cantidad</th>
<th>Recursos</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inicio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Project Charter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.</td>
<td>Desarrollo de acta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1.</td>
<td>Definir enunciado del proyecto</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Definir caso de negocio</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Definir factores ambientales de la empresa</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>1.1.4.</td>
<td>Definir activos de los procesos de la organización</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>1.1.5.</td>
<td>Elaborar acta constitucional del proyecto</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>2.</td>
<td>Interesados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.</td>
<td>Registro de interesados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Identificar interesados</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Elaborar registro de interesados</td>
<td>1</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>2.2.</td>
<td>Matriz de abordaje</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Identificar impacto de cada interesado</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Establecer estrategia de gestión de los interesados</td>
<td>1</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>3.</td>
<td>Planificación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.</td>
<td>Documentación de Requisitos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Elaborar encuestas</td>
<td>1</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>3.1.2.</td>
<td>Encuestar a los interesados</td>
<td>5</td>
<td>Hojas de Papel</td>
<td>Hoja Persona</td>
</tr>
<tr>
<td>3.1.3.</td>
<td>Recopilar requisitos de los interesados</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>3.1.4.</td>
<td>Documentar requisitos</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>3.2.</td>
<td>Matriz de trazabilidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Elaborar matriz de trazabilidad</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>4.</td>
<td>Alcance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.</td>
<td>Desarrollo del alcance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Definir objetivos</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Definir el alcance</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Definir restricciones</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>4.1.4.</td>
<td>Elaborar registro de alcance</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>4.1.4.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>5.</td>
<td>Cronograma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.</td>
<td>Tabla de Actividades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Definir actividades</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>5.1.2.</td>
<td>Secuenciar actividades</td>
<td>1</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>5.1.2.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>5.2.</td>
<td>Estimación de recursos y duración</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Estimar recursos para las actividades</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Estimar duración de las actividades</td>
<td>1</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>5.3.</td>
<td>Desarrollo de cronograma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.1.</td>
<td>Elaborar cronograma de hitos</td>
<td>1</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>5.3.1.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>6.</td>
<td>Recursos Humanos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1.</td>
<td>Organigrama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1.1.</td>
<td>Elaborar organigrama jerárquico</td>
<td>1</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>6.1.1.</td>
<td></td>
<td>1</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>6.2.</td>
<td>Roles y responsabilidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2.1.</td>
<td>Equipo del proyecto</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>6.2.1.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>6.2.2.</td>
<td>Elaborar diagrama matricial</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>6.2.2.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>7.</td>
<td>Riesgos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.</td>
<td>Identificación de riesgos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.1.</td>
<td>Identificar riesgos</td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>7.1.2.</td>
<td>Elaborar matriz de riesgos</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>7.1.2.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>7.2.</td>
<td>Análisis cualitativo de riesgos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.1.</td>
<td>Elaborar matriz de probabilidad e impacto</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>8.</td>
<td>Presupuesto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.</td>
<td>Desarrollo de presupuesto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.1.</td>
<td>Elaborar presupuesto</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>8.1.1.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>9.</td>
<td>Comunicaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1.</td>
<td>Plan de comunicaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1.1.</td>
<td>Elaborar plan de comunicaciones</td>
<td>2</td>
<td>Laptop</td>
<td>Unidad</td>
</tr>
<tr>
<td>9.1.1.</td>
<td></td>
<td>2</td>
<td>Persona</td>
<td>Persona</td>
</tr>
<tr>
<td>C</td>
<td>Ejecución</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Diseño

10.1 Plan de recursos productivos

<table>
<thead>
<tr>
<th>10.1.1.</th>
<th>Establecer cantidad de hombres requeridos</th>
<th>1 2 2</th>
<th>Laptop Persona Cuadernillo</th>
<th>Unidad Persona Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.2.</td>
<td>Establecer cantidad de máquinas requeridas</td>
<td>1 2 2</td>
<td>Laptop Persona Cuadernillo</td>
<td>Unidad Persona Unidad</td>
</tr>
</tbody>
</table>

10.2 Inventarios

| 10.2.1. | Establecer inventario inicial | 1 2 | Laptop Persona | Unidad Persona |
| 10.2.2. | Establecer inventario mínimo para reposición | 1 2 | Laptop Persona | Unidad Persona |

10.3 Hoja de requerimientos

| 10.3.1. | Establecer parámetros para hoja de requerimientos de producción | 1 2 | Laptop Persona | Unidad Persona |

10.4 Indicadores

| 10.4.1. | Establecer indicadores de producción | 1 2 | Laptop Persona | Unidad Persona |

10.5 Excel de Operaciones

10.5.1.	Diseñar hoja de cálculo para Plan de recursos productivos	2 2	Laptop Persona	Unidad Persona
10.5.2.	Diseñar hoja de cálculo para Inventarios	2 2	Laptop Persona	Unidad Persona
10.5.3.	Diseñar hoja de cálculo para Hoja de requerimientos	2 2	Laptop Persona	Unidad Persona
10.5.4.	Diseñar hoja de cálculo para Indicadores	2 2	Laptop Persona	Unidad Persona

11. Piloto

11.1 Capacitación

| 11.1.1. | Capacitar al personal sobre el flujo del proceso | 1 2 5 | Laptop Persona Trabajador | Unidad Persona Persona |
| 11.1.2. | Capacitar al personal sobre el manejo del Excel de Operaciones | 1 2 5 | Laptop Persona Trabajador | Unidad Persona Persona |

11.2 Ejecución

<p>| 11.2.1. | Ejecutar proceso propuesto | 1 2 5 | Laptop Persona Trabajador | Unidad Persona Persona |</p>
<table>
<thead>
<tr>
<th>11.3.</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.1.</td>
<td>Realizar control y seguimiento al proceso propuesto</td>
</tr>
<tr>
<td>11.3.2.</td>
<td>Realizar control y seguimiento al personal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.4.</th>
<th>Evaluación de resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.1.</td>
<td>Medir resultados a través de los indicadores</td>
</tr>
<tr>
<td>11.4.2.</td>
<td>Establecer acciones de mejora</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.</th>
<th>Implementación</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.</td>
<td>Puesta en marcha</td>
</tr>
<tr>
<td>12.1.1.</td>
<td>Ejecutar el modelo ajustado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.2.</th>
<th>Validación</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.1.</td>
<td>Evaluar cumplimiento de requisitos</td>
</tr>
<tr>
<td>12.2.2.</td>
<td>Evaluar impactos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Cierre</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>Documento de cierre</td>
</tr>
<tr>
<td>13.1.</td>
<td>Desarrollo del documento de cierre</td>
</tr>
<tr>
<td>13.1.1.</td>
<td>Desarrollar el documento de cierre</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

2.5.3. Estimación de la duración

Tras la estimación de los recursos para cada actividad, se procederá a estimar el tiempo de duración requerido para finalizar las actividades, y a partir de esta se podrá estimar la duración para cada paquete de trabajo, entregable y fase del proyecto. Por último, una vez culminada la estimación se podrá determinar el tiempo aproximado que tomará llevar a cabo el proyecto desde su inicio hasta el cierre. Por medio de la tabla mostrada a continuación, se detallan las fechas de inicio y fin estimadas para cada actividad.
<table>
<thead>
<tr>
<th>Código</th>
<th>Actividad</th>
<th>Duración estimada (días)</th>
<th>Fecha de Inicio</th>
<th>Fecha de Fin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proyecto de Implementación</td>
<td>268</td>
<td>10/03/2016</td>
<td>03/12/2016</td>
</tr>
<tr>
<td>A</td>
<td>Inicio</td>
<td>7</td>
<td>24/03/2016</td>
<td>31/03/2016</td>
</tr>
<tr>
<td>1.</td>
<td>Project Charter</td>
<td>5</td>
<td>24/03/2016</td>
<td>29/03/2016</td>
</tr>
<tr>
<td>1.1.</td>
<td>Desarrollo de acta</td>
<td>5</td>
<td>24/03/2016</td>
<td>29/03/2016</td>
</tr>
<tr>
<td>1.1.1.</td>
<td>Definir enunciado del proyecto</td>
<td>1</td>
<td>24/03/2016</td>
<td>25/03/2016</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Definir caso de negocio</td>
<td>1</td>
<td>24/03/2016</td>
<td>25/03/2016</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Definir factores ambientales de la empresa</td>
<td>1</td>
<td>24/03/2016</td>
<td>25/03/2016</td>
</tr>
<tr>
<td>1.1.4.</td>
<td>Definir activos de los procesos de la organización</td>
<td>1</td>
<td>24/03/2016</td>
<td>25/03/2016</td>
</tr>
<tr>
<td>1.1.5.</td>
<td>Elaborar acta constitucional del proyecto</td>
<td>3</td>
<td>26/03/2016</td>
<td>29/03/2016</td>
</tr>
<tr>
<td>2.</td>
<td>Interesados</td>
<td>6</td>
<td>25/03/2016</td>
<td>31/03/2016</td>
</tr>
<tr>
<td>2.1.</td>
<td>Registro de interesados</td>
<td>2</td>
<td>25/03/2016</td>
<td>27/03/2016</td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Identificar interesados</td>
<td>1</td>
<td>25/03/2016</td>
<td>26/03/2016</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Elaborar registro de interesados</td>
<td>1</td>
<td>26/03/2016</td>
<td>27/03/2016</td>
</tr>
<tr>
<td>2.2.</td>
<td>Matriz de abordaje</td>
<td>2</td>
<td>29/03/2016</td>
<td>31/03/2016</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Identificar impacto de cada interesado</td>
<td>1</td>
<td>29/03/2016</td>
<td>30/03/2016</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Establecer estrategia de gestión de los interesados</td>
<td>1</td>
<td>30/03/2016</td>
<td>31/03/2016</td>
</tr>
<tr>
<td>B</td>
<td>Planificación</td>
<td>45</td>
<td>10/03/2016</td>
<td>24/04/2016</td>
</tr>
<tr>
<td>3.</td>
<td>Requisitos</td>
<td>9</td>
<td>28/03/2016</td>
<td>06/04/2016</td>
</tr>
<tr>
<td>3.1.</td>
<td>Documentación de Requisitos</td>
<td>8</td>
<td>28/03/2016</td>
<td>05/04/2016</td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Elaborar encuestas</td>
<td>3</td>
<td>28/03/2016</td>
<td>31/03/2016</td>
</tr>
<tr>
<td>3.1.2.</td>
<td>Encuestar a los interesados</td>
<td>1</td>
<td>01/04/2016</td>
<td>02/04/2016</td>
</tr>
<tr>
<td>3.1.3.</td>
<td>Recopilar requisitos de los interesados</td>
<td>1</td>
<td>02/04/2016</td>
<td>03/04/2016</td>
</tr>
<tr>
<td>3.1.4.</td>
<td>Documentar requisitos</td>
<td>2</td>
<td>03/04/2016</td>
<td>05/04/2016</td>
</tr>
<tr>
<td>3.2.</td>
<td>Matriz de trazabilidad</td>
<td>1</td>
<td>05/04/2016</td>
<td>06/04/2016</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Elaborar matriz de trazabilidad</td>
<td>1</td>
<td>05/04/2016</td>
<td>06/04/2016</td>
</tr>
<tr>
<td>4.</td>
<td>Alcance</td>
<td>29</td>
<td>10/03/2016</td>
<td>08/04/2016</td>
</tr>
<tr>
<td>4.1.</td>
<td>Desarrollo del alcance</td>
<td>29</td>
<td>10/03/2016</td>
<td>08/04/2016</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Definir objetivos</td>
<td>3</td>
<td>10/03/2016</td>
<td>13/03/2016</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Definir el alcance</td>
<td>2</td>
<td>02/04/2016</td>
<td>04/04/2016</td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Definir restricciones</td>
<td>2</td>
<td>05/04/2016</td>
<td>07/04/2016</td>
</tr>
<tr>
<td>4.1.4.</td>
<td>Elaborar registro de alcance</td>
<td>1</td>
<td>07/04/2016</td>
<td>08/04/2016</td>
</tr>
<tr>
<td>5.</td>
<td>Cronograma</td>
<td>8</td>
<td>09/04/2016</td>
<td>17/04/2016</td>
</tr>
<tr>
<td>5.1.</td>
<td>Tabla de Actividades</td>
<td>5</td>
<td>09/04/2016</td>
<td>14/04/2016</td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Definir actividades</td>
<td>4</td>
<td>09/04/2016</td>
<td>13/04/2016</td>
</tr>
<tr>
<td>5.1.2.</td>
<td>Secuenciar actividades</td>
<td>1</td>
<td>13/04/2016</td>
<td>14/04/2016</td>
</tr>
<tr>
<td>Sección</td>
<td>Descripción</td>
<td>N°</td>
<td>Fecha Inicio</td>
<td>Fecha Final</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>5.2.</td>
<td>Estimación de recursos y duración</td>
<td>2</td>
<td>14/04/2016</td>
<td>16/04/2016</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Estimar recursos para las actividades</td>
<td>1</td>
<td>14/04/2016</td>
<td>15/04/2016</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Estimar duración de las actividades</td>
<td>1</td>
<td>15/04/2016</td>
<td>16/04/2016</td>
</tr>
<tr>
<td>5.3.</td>
<td>Desarrollo de cronograma</td>
<td>1</td>
<td>16/04/2016</td>
<td>17/04/2016</td>
</tr>
<tr>
<td>5.3.1.</td>
<td>Elaborar cronograma de hitos</td>
<td>1</td>
<td>16/04/2016</td>
<td>17/04/2016</td>
</tr>
<tr>
<td>6.</td>
<td>Recursos Humanos</td>
<td>13</td>
<td>03/04/2016</td>
<td>16/04/2016</td>
</tr>
<tr>
<td>6.1.</td>
<td>Organigrama</td>
<td>2</td>
<td>03/04/2016</td>
<td>05/04/2016</td>
</tr>
<tr>
<td>6.2.</td>
<td>Roles y responsabilidad</td>
<td>6</td>
<td>10/04/2016</td>
<td>16/04/2016</td>
</tr>
<tr>
<td>6.2.1.</td>
<td>Equipo del proyecto</td>
<td>3</td>
<td>10/04/2016</td>
<td>13/04/2016</td>
</tr>
<tr>
<td>6.2.2.</td>
<td>Elaborar diagrama matricial</td>
<td>2</td>
<td>14/04/2016</td>
<td>16/04/2016</td>
</tr>
<tr>
<td>7.</td>
<td>Riesgos</td>
<td>7</td>
<td>17/04/2016</td>
<td>24/04/2016</td>
</tr>
<tr>
<td>7.1.</td>
<td>Identificación de riesgos</td>
<td>5</td>
<td>17/04/2016</td>
<td>22/04/2016</td>
</tr>
<tr>
<td>7.1.1.</td>
<td>Identificar riesgos</td>
<td>2</td>
<td>17/04/2016</td>
<td>19/04/2016</td>
</tr>
<tr>
<td>7.1.2.</td>
<td>Elaborar matriz de riesgos</td>
<td>2</td>
<td>20/04/2016</td>
<td>22/04/2016</td>
</tr>
<tr>
<td>7.2.</td>
<td>Análisis cualitativo de riesgos</td>
<td>2</td>
<td>22/04/2016</td>
<td>24/04/2016</td>
</tr>
<tr>
<td>7.2.1.</td>
<td>Elaborar matriz de probabilidad e impacto</td>
<td>2</td>
<td>22/04/2016</td>
<td>24/04/2016</td>
</tr>
<tr>
<td>8.</td>
<td>Presupuesto</td>
<td>2</td>
<td>18/04/2016</td>
<td>20/04/2016</td>
</tr>
<tr>
<td>8.1.</td>
<td>Desarrollo de presupuesto</td>
<td>2</td>
<td>18/04/2016</td>
<td>20/04/2016</td>
</tr>
<tr>
<td>8.1.1.</td>
<td>Elaborar presupuesto</td>
<td>2</td>
<td>18/04/2016</td>
<td>20/04/2016</td>
</tr>
<tr>
<td>9.</td>
<td>Comunicaciones</td>
<td>3</td>
<td>14/04/2016</td>
<td>17/04/2016</td>
</tr>
<tr>
<td>9.1.</td>
<td>Plan de comunicaciones</td>
<td>3</td>
<td>14/04/2016</td>
<td>17/04/2016</td>
</tr>
<tr>
<td>9.1.1.</td>
<td>Elaborar plan de comunicaciones</td>
<td>3</td>
<td>14/04/2016</td>
<td>17/04/2016</td>
</tr>
<tr>
<td>C</td>
<td>Ejecución</td>
<td>177</td>
<td>09/06/2016</td>
<td>03/12/2016</td>
</tr>
<tr>
<td>10.</td>
<td>Diseño</td>
<td>10</td>
<td>09/06/2016</td>
<td>18/06/2016</td>
</tr>
<tr>
<td>10.1</td>
<td>Plan de recursos productivos</td>
<td>3</td>
<td>15/06/2016</td>
<td>18/06/2016</td>
</tr>
<tr>
<td>10.1.1.</td>
<td>Establecer cantidad de hombres requeridos</td>
<td>1</td>
<td>15/06/2016</td>
<td>16/06/2016</td>
</tr>
<tr>
<td>10.1.2.</td>
<td>Establecer cantidad de máquinas requeridas</td>
<td>1</td>
<td>17/06/2016</td>
<td>18/06/2016</td>
</tr>
<tr>
<td>10.2</td>
<td>Inventarios</td>
<td>1</td>
<td>17/06/2016</td>
<td>18/06/2016</td>
</tr>
<tr>
<td>10.2.1.</td>
<td>Establecer inventario inicial</td>
<td>1</td>
<td>17/06/2016</td>
<td>18/06/2016</td>
</tr>
<tr>
<td>10.2.2.</td>
<td>Establecer inventario mínimo para reposición</td>
<td>1</td>
<td>17/06/2016</td>
<td>18/06/2016</td>
</tr>
<tr>
<td>10.3</td>
<td>Hoja de requerimientos</td>
<td>1</td>
<td>09/06/2016</td>
<td>10/06/2016</td>
</tr>
<tr>
<td>10.3.1.</td>
<td>Establecer parámetros para hoja de requerimientos de producción</td>
<td>1</td>
<td>09/06/2016</td>
<td>10/06/2016</td>
</tr>
<tr>
<td>10.4.</td>
<td>Indicadores</td>
<td>3</td>
<td>09/06/2016</td>
<td>12/06/2016</td>
</tr>
<tr>
<td>10.4.1.</td>
<td>Establecer indicadores de producción</td>
<td>3</td>
<td>09/06/2016</td>
<td>12/06/2016</td>
</tr>
<tr>
<td>10.5.</td>
<td>Excel de Operaciones</td>
<td>3</td>
<td>09/06/2016</td>
<td>12/06/2016</td>
</tr>
<tr>
<td>10.5.1.</td>
<td>Diseñar hoja de cálculo para Plan de recursos productivos</td>
<td>1</td>
<td>10/06/2016</td>
<td>11/06/2016</td>
</tr>
<tr>
<td>10.5.2.</td>
<td>Diseñar hoja de cálculo para Inventarios</td>
<td>1</td>
<td>10/06/2016</td>
<td>11/06/2016</td>
</tr>
<tr>
<td>10.5.3.</td>
<td>Diseñar hoja de cálculo para Hoja de requerimientos</td>
<td>3</td>
<td>09/06/2016</td>
<td>12/06/2016</td>
</tr>
<tr>
<td>10.5.4.</td>
<td>Diseñar hoja de cálculo para Indicadores</td>
<td>2</td>
<td>10/06/2016</td>
<td>12/06/2016</td>
</tr>
<tr>
<td>11.1.1.</td>
<td>Capacitar al personal sobre el flujo del proceso</td>
<td>2</td>
<td>07/07/2016</td>
<td>09/07/2016</td>
</tr>
<tr>
<td>11.1.2.</td>
<td>Capacitar al personal sobre el manejo del Excel de Operaciones</td>
<td>2</td>
<td>07/07/2016</td>
<td>09/07/2016</td>
</tr>
<tr>
<td>11.2.</td>
<td>Ejecución</td>
<td>33</td>
<td>18/07/2016</td>
<td>20/08/2016</td>
</tr>
<tr>
<td>11.2.1.</td>
<td>Ejecutar proceso propuesto</td>
<td>33</td>
<td>18/07/2016</td>
<td>20/08/2016</td>
</tr>
<tr>
<td>11.3.</td>
<td>Control</td>
<td>33</td>
<td>18/07/2016</td>
<td>20/08/2016</td>
</tr>
<tr>
<td>11.3.1.</td>
<td>Realizar control y seguimiento al proceso propuesto</td>
<td>33</td>
<td>18/07/2016</td>
<td>20/08/2016</td>
</tr>
<tr>
<td>11.3.2.</td>
<td>Realizar control y seguimiento al personal</td>
<td>33</td>
<td>18/07/2016</td>
<td>20/08/2016</td>
</tr>
<tr>
<td>11.4.</td>
<td>Evaluación de resultados</td>
<td>7</td>
<td>20/08/2016</td>
<td>27/08/2016</td>
</tr>
<tr>
<td>11.4.1.</td>
<td>Medir resultados a través de los indicadores</td>
<td>5</td>
<td>20/08/2016</td>
<td>25/08/2016</td>
</tr>
<tr>
<td>11.4.2.</td>
<td>Establecer acciones de mejora</td>
<td>2</td>
<td>25/08/2016</td>
<td>27/08/2016</td>
</tr>
<tr>
<td>12.</td>
<td>Implementación</td>
<td>96</td>
<td>29/08/2016</td>
<td>03/12/2016</td>
</tr>
<tr>
<td>12.1.</td>
<td>Puesta en marcha</td>
<td>96</td>
<td>29/08/2016</td>
<td>03/12/2016</td>
</tr>
<tr>
<td>12.1.1.</td>
<td>Ejecutar el modelo ajustado</td>
<td>96</td>
<td>29/08/2016</td>
<td>03/12/2016</td>
</tr>
<tr>
<td>12.2.</td>
<td>Validación</td>
<td>84</td>
<td>03/09/2016</td>
<td>26/11/2016</td>
</tr>
<tr>
<td>12.2.1.</td>
<td>Evaluar cumplimiento de requisitos</td>
<td>84</td>
<td>03/09/2016</td>
<td>26/11/2016</td>
</tr>
<tr>
<td>12.2.2.</td>
<td>Evaluar impactos</td>
<td>84</td>
<td>03/09/2016</td>
<td>26/11/2016</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Luego de estimar la duración de las actividades, se determina que el proyecto de implementación tiene una duración estimada de 268 días, habiendo iniciado algunas actividades el 10/03/2016 y culminando las demás aproximadamente el 03/12/2016.

2.5.4. Cronograma del Proyecto

Para la realización del cronograma del proyecto se ha tomado en cuenta la secuencia de las actividades, los recursos necesarios, y la duración estimada. A partir de ello, se ha diseñado un Diagrama de Gantt en el cual están considerados las fases y entregables del proyecto. Asimismo, se asignaron hitos a cada fase del proyecto para medir el tiempo real ocupado para cada una.
Figura 13: Diagrama de Gantt del proyecto de implementación

<table>
<thead>
<tr>
<th>Nombre de tarea</th>
<th>01 marzo</th>
<th>01 mayo</th>
<th>01 julio</th>
<th>01 septiembre</th>
<th>01 noviembre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lun 15/02</td>
<td>lun 14/03</td>
<td>lun 11/04</td>
<td>lun 09/05</td>
<td>lun 08/06</td>
</tr>
<tr>
<td>PROYECTO DE IMPLEMENTACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INICIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Charter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interesados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HITO 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANIFICACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requisitos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cronograma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recursos Humanos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riesgos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presupuesto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HITO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJECUCIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseño</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HITO 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIERRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documento de cierre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HITO 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Como se puede observar por medio del diagrama de Gantt, el proyecto inició durante los primeros días del mes de marzo del presente año y por otra parte, el proyecto tiene previsto ser culminado en los primeros días del mes de diciembre.

2.6. Gestión de Recursos Humanos

En esta sección, se organiza al equipo del proyecto que estará conformado por el grupo y los interesados del mismo previamente identificados, pues todos los mencionados cumplen un rol o responsabilidad para llevar a cabo el desarrollo del proyecto. En primer lugar, se elaboró un organigrama de la empresa en el cual están ubicados los representantes de esta en el proyecto, así como el resto del personal. Por último, se estableció las responsabilidades del equipo en las actividades.

2.6.1. Organigrama

A continuación, se muestra el organigrama de Fierrosol S.A.C., como se puede observar la empresa cuenta con 14 trabajadores incluido el gerente general, y dueño; y en este diagrama están ubicados el resto de interesados en el proyecto que son Guillermo, Maximiliana, Alfonso y Luis. Por otro lado, las áreas delineadas corresponden al área de Almacén, Operaciones y Transporte respectivamente.
Figura 14: Organigrama de la empresa Fierrosol S.A.C.
2.6.2. Equipo del proyecto

El equipo del proyecto para la implementación del sistema de planificación, programación y control en la empresa, lo conforman las personas listadas en la tabla y también están descritas las responsabilidades de cada uno de los integrantes del equipo. En el caso de algunos, no existe un rol designado dentro del proyecto, ya que el rol que ocupan dentro de este es netamente el cargo laboral que tienen dentro de la empresa, pues las interacciones con cada uno de estos están dadas para recopilar información.

Tabla 43: Equipo del proyecto

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Rol</th>
<th>Responsabilidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cristian Andrade</td>
<td>Responsable del proyecto</td>
<td>Gestionar y controlar el proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicación al proyecto de tiempo completo</td>
</tr>
<tr>
<td>Wilfredo Salinas</td>
<td>Responsable del proyecto</td>
<td>Gestionar y controlar el proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicación al proyecto de tiempo completo</td>
</tr>
<tr>
<td>Guillermo Zúñiga Escalante</td>
<td>Iniciador del proyecto</td>
<td>Validar el proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poner en marcha los formatos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicación al proyecto de tiempo completo</td>
</tr>
<tr>
<td>Roberto Angulo Canales</td>
<td>Gerente General</td>
<td>Alinearse al sistema de producción</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fomentar el interés del sistema en la organización</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poner en marcha los formatos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicación al proyecto de tiempo completo</td>
</tr>
<tr>
<td>Luis Huisa Ramos</td>
<td>Maestro de Operaciones</td>
<td>Poner en marcha los formatos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alinearse al sistema de producción</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrar el sistema a sus métodos de trabajo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicación al proyecto de tiempo completo</td>
</tr>
<tr>
<td>Maximiliana Guzmán Cómndor</td>
<td>Encargada Logística</td>
<td>Poner en marcha los formatos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alinearse al sistema de producción</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicación al proyecto de tiempo parcial</td>
</tr>
<tr>
<td>Alfonso Pizarro Landeo</td>
<td>Encargado de Almacén</td>
<td>Alinearse al sistema de producción</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicación al proyecto de tiempo parcial</td>
</tr>
</tbody>
</table>

Fuente: The Project Management Institute 2013
Elaboración propia
2.6.3. Matriz de Asignación de Responsabilidades

Para llevar a cabo la matriz de asignación de responsabilidades (RAM), se utilizará el formato RACI. Por medio del RAM se identificarán las relaciones que existen entre las actividades y cada integrante del equipo del proyecto. Por ello, en la matriz mostrada a continuación están listadas las actividades referentes a la fase de ejecución, pues es en esta en la que intervienen en conjunto los gestores del proyecto y los interesados en este, de manera que se determinará las responsabilidades de los involucrados en las actividades.

Tabla 44: Leyenda de responsabilidades

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Persona responsable</td>
</tr>
<tr>
<td>A</td>
<td>Persona que rinde cuentas</td>
</tr>
<tr>
<td>C</td>
<td>Persona consultada</td>
</tr>
<tr>
<td>I</td>
<td>Persona informada</td>
</tr>
</tbody>
</table>

Personas: The Project Management Institute 2013
Elaboración propia

Persona responsable: Tiene la responsabilidad de desarrollar la actividad.

Persona que rinde cuentas: Se encarga de aprobar la actividad realizada por la persona responsable.

Persona consultada: No está directamente involucrada en el desarrollo de las actividades, se le solicita información u opiniones.

Persona informada: Está al tanto sobre los progresos del proyecto.
Tabla 45: Matriz de asignación de responsabilidades

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Guillermo Zúñiga</th>
<th>Cristian Andrade</th>
<th>Wilfredo Salinas</th>
<th>Roberto Angulo</th>
<th>Maximiliana Guzmán</th>
<th>Luis Huisa</th>
<th>Alfonso Pizarro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan de recursos productivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecer cantidad de hombres requeridos</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecer cantidad de máquinas requeridas</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecer inventario inicial</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecer inventario mínimo para reposición</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoja de requerimientos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecer parámetros para hoja de requerimientos de producción</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecer indicadores de producción</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excel de Operaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Plan de recursos productivos</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Inventarios</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Hoja de requerimientos</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Indicadores</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piloto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitar al personal sobre el flujo del proceso</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Capacitar al personal sobre el manejo del Excel de Operaciones</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Ejecución</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejecutar proceso propuesto</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realizar control y seguimiento al proceso propuesto</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realizar control y seguimiento al personal</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluación de resultados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medir resultados a través de los indicadores</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecer acciones de mejora</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puesta en marcha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejecutar el modelo ajustado</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Validación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluar cumplimiento de requisitos</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluar impactos</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: The Project Management Institute 2013
Elaboración propia
Por medio de la matriz se puede observar que los responsables de todas las actividades involucradas en la ejecución y el resto de fases del proyecto somos los gestores de este. Asimismo, el dueño de la empresa también es responsable en las actividades relacionadas a la puesta en marcha y difusión. Por otro lado, el resto de interesados en el proyecto ocupa las responsabilidades de rendir cuentas, ser consultada para obtener cierta información, y de estar informada sobre las actividades a realizar en la empresa.

2.7. Gestión de Riesgos

Durante el desarrollo de un proyecto, existen riesgos que pueden afectar el cumplimiento de este. Debido a esto, es necesario identificar los riesgos por los que el presente proyecto puede ser afectado, y una vez determinado cada uno de ellos se elaborará la matriz de riesgos mediante la cual serán definidos el impacto y probabilidad de estos con el fin de establecer mitigaciones y planes de contingencias para cada riesgo.

2.7.1. Identificación de Riesgos

Por medio de la realización de lluvia de ideas y consultas con expertos, se identificaron los riesgos que pueden afectar al proyecto, los cuales están listados a continuación.

<table>
<thead>
<tr>
<th>Nro.</th>
<th>Riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Retraso por parte del dueño de la empresa para la fase de implementación del sistema de programación y control de producción.</td>
</tr>
<tr>
<td>02</td>
<td>Incumplimiento del compromiso del dueño de la empresa para llevar a cabo la implementación del proyecto.</td>
</tr>
<tr>
<td>03</td>
<td>Las actividades de diseño de formatos demoren más tiempo del planificado.</td>
</tr>
<tr>
<td>04</td>
<td>Indisposición del personal involucrado para asistir a las capacitaciones sobre el sistema de programación y control de producción.</td>
</tr>
<tr>
<td>05</td>
<td>El retraso de las capacitaciones generaría que la puesta en marcha de la implementación tome más tiempo del planificado.</td>
</tr>
<tr>
<td>06</td>
<td>Las hojas de cálculo diseñadas sean muy complejas para el personal que trabajará con ellas.</td>
</tr>
<tr>
<td>07</td>
<td>Incumplimiento de la empresa para facilitar el acceso de los datos de ventas del presente año.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
2.7.2. Análisis Cualitativo de Riesgos

Tras identificar los riesgos del presente proyecto, es necesario desarrollar una matriz de riesgos mediante la cual se puedan presentar las mitigaciones y plan de contingencia para cada uno de los riesgos identificados. Asimismo, en la matriz se determinará el impacto y la probabilidad de ocurrencia de cada uno de los riesgos previamente identificados.

Para el desarrollo de esta se utilizó una matriz de probabilidad e impacto. Por lo tanto, a continuación, se mostrarán las escalas numéricas para el impacto y la probabilidad, así como el producto de estas.

Tabla 47: Matriz de probabilidad e impacto

<table>
<thead>
<tr>
<th>Probabilidad</th>
<th>Producto de probabilidad e impacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.045 0.09 0.18 0.36 0.72</td>
</tr>
<tr>
<td>0.7</td>
<td>0.035 0.07 0.14 0.28 0.56</td>
</tr>
<tr>
<td>0.5</td>
<td>0.025 0.05 0.1 0.2 0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.015 0.03 0.06 0.12 0.24</td>
</tr>
<tr>
<td>0.1</td>
<td>0.005 0.01 0.02 0.04 0.08</td>
</tr>
<tr>
<td>Impacto</td>
<td>0.05 0.1 0.2 0.4 0.8</td>
</tr>
</tbody>
</table>

Fuente: The Project Management Institute 2013
Elaboración propia
Tabla 48: Matriz de Riesgos del proyecto

<table>
<thead>
<tr>
<th>Nro</th>
<th>Descripción de Riesgo</th>
<th>Categoría</th>
<th>Probabilidad</th>
<th>Impacto</th>
<th>Severidad</th>
<th>Responsable</th>
<th>Mitigación</th>
<th>Contingencia</th>
</tr>
</thead>
</table>
| 01 | Retraso por parte del dueño de la empresa para la fase de implementación del sistema de planificación, programación y control de producción. | Personal | 0.5 | 0.4 | 0.2 | Roberto Angulo | 1. Mantener constante comunicación con el dueño acerca del desarrollo del proyecto.
2. Durante las visitas a la empresa, mostrar el avance del proyecto. | 1. Analizar si la implementación se dará en las fechas planificadas, de lo contrario ajustar las fechas. |
| 02 | Incumplimiento del compromiso del dueño de la empresa para llevar a cabo la implementación del proyecto. | Personal | 0.5 | 0.4 | 0.2 | Roberto Angulo | 1. Avanzar y culminar con las actividades del proyecto lo antes posible.
2. Avanzar y culminar con las actividades del diseño del proceso lo más pronto posible, para iniciar la implementación de este.
3. Durante las conversaciones con el dueño, explicar la importancia del proyecto para los gestores de este. | 1. Analizar el comportamiento del dueño respecto al interés por el proyecto.
2. Analizar si el desarrollo de las actividades se está dando en las fechas planificadas, para adelantar en cuanto sea posible la implementación del proceso.
3. Demostrar al dueño, la importancia de implementar el proceso en su empresa. |
| 03 | Las actividades de diseño de formatos demoren más tiempo del planificado. | Tiempo | 0.3 | 0.2 | 0.06 | Cristian Andrade, Wilfredo Salinas | 1. Controlar la duración de tiempo estimada para realizar las actividades, para poder cumplir con el tiempo de entrega planificado. | 1. Dedicar mayor tiempo a las actividades, agregar de 2 a 4 horas más a cada actividad de diseño. |
| 04 | Indisposición del personal involucrado para asistir a las capacitaciones sobre el sistema de planificación, programación y control de producción. | Personal | 0.7 | 0.2 | 0.14 | Roberto Angulo | 1. Conversar con el dueño de la empresa para que informe al personal la obligatoriedad de asistir a las capacitaciones.
2. Fomentar un ambiente de confianza entre los expositores de la capacitación y los participantes. | 1. Preparar un ambiente de capacitación cómodo para todo el personal, incluyendo un pequeño refrigerio al finalizar las sesiones. |
<table>
<thead>
<tr>
<th></th>
<th>Detalle</th>
<th>Tiempo</th>
<th>Prioridad</th>
<th>Responsable</th>
<th>Acciones</th>
</tr>
</thead>
</table>
| 05| El retraso de las capacitaciones generaría que la puesta en marcha de la implementación tome más tiempo del planificado. | 0.3 | 0.1 | Cristian Andrade, Wilfredo Salinas | 1. Preparar el plan de capacitación y elaborar con tiempo las presentaciones a realizar.
2. Programar las capacitaciones y informar a la empresa las fechas en las que se dictarán. |
| 06| Las hojas de cálculo diseñadas sean muy complejas para el personal que trabajará con ellas. | 0.3 | 0.8 | Cristian Andrade, Wilfredo Salinas | 1. Durante el diseño de las plantillas, consultar con el dueño sobre su apreciación de estas para tomar en cuenta sus observaciones.
2. Crear manuales que sirvan de guía para la utilización de las hojas de cálculo. |
| 07| Incumplimiento de la empresa para facilitar el acceso de los datos de ventas del presente año. | 0.1 | 0.2 | Guillermo Zúñiga | 1. Realizar seguimiento al encargado de enviar la información mediante recordatorios por medio de correos electrónicos, llamadas, redes sociales, y visitas personales.
2. Consultar al personal su opinión sobre las hojas de cálculo, en base a ello ajustar el formato para que se facilite su aplicación. |

Fuente: The Project Management Institute 2013
Elaboración propia
Luego de identificar 7 riesgos en el proyecto, se realizó la matriz de riesgos mediante la cual fueron asignadas la probabilidad de ocurrencia para cada uno y el impacto que podría tener este en el proyecto.

Como resultado se obtuvo que el principal riesgo presente en el proyecto es que el dueño de la empresa cancele la implementación del proceso, ya que impediría cumplir con el objetivo y alcance planteados para el trabajo. Por ello, es importante el seguimiento al interés del dueño, y avanzar lo más pronto posible las actividades del proyecto para poder efectuar la implementación que inicia con el plan piloto para finalmente implementar el sistema. Asimismo, los otros riesgos que se encuentran en la zona de riesgo alto son que exista cierto retraso para llevar a cabo la implementación y que el diseño propuesto resulte complejo para la empresa. Mientras que los riesgos moderados están relacionados a que el grupo del proyecto tarde en realizar las actividades relacionadas al diseño de los formatos, y la falta de interés del personal para las capacitaciones. Por otra parte, los riesgos bajos son el retraso de las capacitaciones por parte del grupo y la demora de la empresa para enviar la información solicitada.

Además, una vez calculada la severidad de cada riesgo a continuación se realizará la calificación de los riesgos, donde será determinado el estado de estos, los “triggers” que son las causas por las que ocurre el riesgo, y los entregables que se verían afectados por estos.
<table>
<thead>
<tr>
<th>Nro.</th>
<th>Descripción de Riesgo</th>
<th>Severidad</th>
<th>Estado</th>
<th>Triggers</th>
<th>Entregables Afectados</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Retraso por parte del dueño de la empresa para la fase de implementación del sistema de programación y control de producción.</td>
<td>0.2</td>
<td>Activo</td>
<td>Descuido, desconocimiento del proceso de programación y control, poca comunicación entre el dueño y el grupo del proyecto</td>
<td>Piloto, Implementación, Documento de cierre</td>
</tr>
<tr>
<td>02</td>
<td>Incumplimiento del compromiso del dueño de la empresa para llevar a cabo la implementación del proyecto.</td>
<td>0.2</td>
<td>Activo</td>
<td>Falta de interés en mejoras para su empresa, descuido, preferencia por buscar ganancias</td>
<td>Diseño, Piloto, Implementación, Documento de cierre</td>
</tr>
<tr>
<td>03</td>
<td>Las actividades de diseño de formatos demoren más tiempo del planificado.</td>
<td>0.06</td>
<td>Activo</td>
<td>Descuido, inadecuado control del cumplimiento de actividades, dificultad para cumplir con el tiempo estimado</td>
<td>Diseño</td>
</tr>
<tr>
<td>04</td>
<td>Indisposición del personal involucrado para asistir a las capacitaciones sobre el sistema de programación y control de producción.</td>
<td>0.14</td>
<td>Activo</td>
<td>Falta de interés, desconocimiento del proceso de programación y control, preferencia por trabajar sin control</td>
<td>Piloto, Implementación</td>
</tr>
<tr>
<td>05</td>
<td>El retraso de las capacitaciones generaría que la puesta en marcha de la implementación tome más tiempo del planificado.</td>
<td>0.03</td>
<td>Activo</td>
<td>Descoordinación, descuido en la elaboración del plan de capacitación, falta de interés para elaborar presentaciones</td>
<td>Piloto, Implementación</td>
</tr>
<tr>
<td>06</td>
<td>Las hojas de cálculo diseñadas sean muy complejas para el personal que trabajará con ellas.</td>
<td>0.24</td>
<td>Activo</td>
<td>Fórmulas complejas, descripción muy técnica de los factores involucrados</td>
<td>Piloto</td>
</tr>
<tr>
<td>07</td>
<td>Incumplimiento de la empresa para facilitar el acceso de los datos de ventas del presente año.</td>
<td>0.02</td>
<td>Activo</td>
<td>Falta de compromiso para cumplir lo acordado, falta de interés</td>
<td>Diseño</td>
</tr>
</tbody>
</table>

Fuente: The Project Management Institute 2013
Elaboración propia
Por medio de la tabla anterior, se determina que el estado de todos los riesgos permanece activo, puesto que están relacionados a actividades que pertenecen a la fase ejecución, cuya realización será mostrada en el siguiente capítulo. Por lo tanto, los entregables afectados son principalmente los de la fase de ejecución del proyecto cuya realización será efectuada una vez culminado la etapa del diseño del proceso.

2.8. Presupuesto

Tras realizar la estimación de los recursos para las actividades, se elaboró el presupuesto en base a los recursos que requieren cada actividad. En este caso, los recursos a adquirir por parte nuestra son papel bond y cuadernillos, ya que serán utilizados para las actividades propias de la investigación y desarrollo del proyecto.

Por otro lado, el desarrollo del proyecto implica tiempo por parte de los gestores del proyecto por lo que está considerado dentro del presupuesto; así como el tiempo por parte de la empresa para la capacitación del personal y la intervención de este en la implementación del proceso. Asimismo, está considerado también el transporte de ambos integrantes del grupo para ir a visitar la empresa. A continuación, se muestra el presupuesto del proyecto.
Tabla 50: Presupuesto del proyecto

<table>
<thead>
<tr>
<th>Presupuesto</th>
<th>Personal</th>
<th>Objetivo</th>
<th>Tiempo</th>
<th>Costo Unitario Hora-Hombre</th>
<th>Frecuencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cristian Andrade Wilfredo Salinas</td>
<td>Gestión y seguimiento del proyecto</td>
<td>1360 horas</td>
<td>S/. 6.67</td>
<td>Permanente</td>
<td>S/. 9,071</td>
</tr>
<tr>
<td></td>
<td>Roberto Angulo</td>
<td>Capacitación de Personal e implementación del proceso</td>
<td>35 horas</td>
<td>S/. 15.38</td>
<td>Ocasional</td>
<td>S/. 538</td>
</tr>
<tr>
<td></td>
<td>Luis Huisa</td>
<td>Capacitación de Personal e implementación del proceso</td>
<td>30 horas</td>
<td>S/. 7.69</td>
<td>Ocasional</td>
<td>S/. 231</td>
</tr>
<tr>
<td></td>
<td>Maximiliana Guzmán</td>
<td>Capacitación de Personal e implementación del proceso</td>
<td>25 horas</td>
<td>S/. 4.81</td>
<td>Ocasional</td>
<td>S/. 120</td>
</tr>
<tr>
<td></td>
<td>Guillermo Zúñiga</td>
<td>Capacitación de Personal e implementación del proceso</td>
<td>45 horas</td>
<td>S/. 16.34</td>
<td>Ocasional</td>
<td>S/. 735</td>
</tr>
<tr>
<td></td>
<td>Alfonso Pizarro</td>
<td>Capacitación de Personal e implementación del proceso</td>
<td>20 horas</td>
<td>S/. 4.81</td>
<td>Ocasional</td>
<td>S/. 96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Objetivo</th>
<th>Cantidad</th>
<th>Costo Unitario</th>
<th>Frecuencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitácora</td>
<td>Levantamiento de información</td>
<td>2 und</td>
<td>S/. 6.00</td>
<td>Permanente</td>
<td>S/. 12</td>
</tr>
<tr>
<td>500 Hojas Bond</td>
<td>Formatos / Impresiones / Otros</td>
<td>1 paquete</td>
<td>S/. 10.00</td>
<td>Permanente</td>
<td>S/. 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transporte</th>
<th>Objetivo</th>
<th>Cantidad</th>
<th>Costo Unitario</th>
<th>Frecuencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte</td>
<td>Transporte a la empresa / Retorno</td>
<td>2 hm</td>
<td>S/. 5.00</td>
<td>20 semanas</td>
<td>S/. 200</td>
</tr>
</tbody>
</table>

TOTAL PRESUPUESTO PROYECTO

S/. 11,014

Fuente: Elaboración propia
2.9. Gestión de Comunicaciones

La difusión de toda información referente al proyecto es necesaria dentro del equipo, por lo que es importante la elaboración de un plan de comunicaciones que permita a los responsables del proyecto informar e interactuar con las personas involucradas sobre los avances realizados durante el desarrollo del mismo.

2.9.1. Plan de Comunicaciones

Para el presente proyecto, se debe recurrir al método de comunicación interactiva, ya que este garantiza la comprensión común de la información por medio de llamadas, mensajes, reuniones, entre otros.

Por medio del plan de comunicaciones se busca lograr establecer un equipo adecuado de comunicación entre los gestores del proyecto y los representantes de la empresa, interesados en el proyecto. La finalidad del plan es comunicar en las sesiones programadas el avance del proyecto.
En primer lugar, en la revisión de la documentación por parte de los gestores del proyecto, se tratan todos los temas relacionados a este. En segundo lugar, para el estado del proyecto, se trata junto al responsable del proyecto, por parte de la empresa, todo lo referente al avance del proyecto. En tercer lugar, en las presentaciones del proyecto que el grupo realiza para el dueño, el validador del proyecto y el maestro de operaciones, se expondrá los avances en cuanto a la etapa de diseño y plan piloto esperado. Por último, en el seguimiento al área de Operaciones, el grupo del proyecto se comunica con el maestro de operaciones para realizar consultas que ayudarán al desarrollo del diseño del sistema.
En el presente capítulo, se ha detallado todas las actividades involucradas para llevar a cabo nuestro proyecto, partiendo desde la fase de inicio, planificación, ejecución y cierre. Cada una de las actividades pertenece a un paquete de trabajo, y este pertenece a cierto entregable que se desprende de cada una de las fases. Tras la definición de las actividades, secuenciación y duración de estas, se estimaron los recursos necesarios para las actividades, así como fue desarrollado el cronograma del proyecto, en el cual han sido definidos algunos hitos que permitirán comparar el tiempo teórico asignado a las actividades con el tiempo real que tomarán. Asimismo, cualquier tipo de proyecto presenta riesgos por lo que se definieron los posibles riesgos para el presente proyecto y se evaluó su severidad, para determinar las acciones mitigadoras y plan de contingencia. Finalmente, fue presentado el presupuesto del proyecto que está dado por el consumo de tiempo tanto del grupo del proyecto como el del personal de la empresa involucrado en las actividades; asimismo, el plan de comunicaciones detalla las fechas programadas a seguir para reunirse con los interesados en el proyecto y comunicar el avance de este.
CAPÍTULO 3 : DISEÑO E IMPLEMENTACIÓN

En este capítulo, se presentará el modelo del proceso de planificación, programación y control propuesto, el cual será implementado en la empresa, por lo que se analizará a detalle el plan de la fase de implementación del proyecto, el cual consiste en las etapas de diseño, piloto y posterior implementación tras evaluar los resultados obtenidos. En esta fase del proyecto, serán descritas cada una de las actividades involucradas, se identificarán los recursos necesarios, estimarán los costos y evaluará el tiempo requerido para desarrollar cada actividad. Además, se identificarán los riesgos involucrados en la fase de ejecución para establecer acciones mitigadores y plan de contingencia relacionados a cada riesgo. También, será presentado el plan de capacitación a desarrollar por parte del grupo del proyecto, el cual será manejado por este para programar las capacitaciones a dictar al personal de la empresa. Finalmente, se presentará la herramienta informática de soporte para el flujo del proceso propuesto, los mismos que serán enseñados a los trabajadores de la empresa como parte de la capacitación en la implementación del proceso.
3.1. Diseño del proceso de planificación, programación y control

Como se mencionó en el capítulo anterior, actualmente la empresa no cuenta con un proceso estratégico definido que permita orientar los objetivos de la empresa basado en resultados, los cuales son analizados por medio de herramientas de control como por ejemplo indicadores. Esto permitiría alinear dichos objetivos a los procesos clave del negocio que son apoyados a su vez por los procesos de soporte. Como se puede observar, el mapa de procesos actual es el siguiente:

Figura 15: Mapa de procesos actual – Fierrosol S.A.C.

La estructura de procesos señalada anteriormente, ha ocasionado en la empresa ventas perdidas como por ejemplo en la familia de planchas. De esta manera, el dueño mostró interés en la inclusión de un proceso que permita mitigar lo señalado y por ello, se diseñará la nueva estructura y flujo de procesos que tendrá la empresa con la inclusión del proceso de planificación, programación y control; y posteriormente, su ejecución.

Así, el nuevo mapa de procesos de la empresa se muestra a continuación.
Como se observa, el modelo propone cambios en los procesos estratégicos y claves mas no en los de soporte, ya que el proyecto está enfocado en el core del negocio.

El proceso de planificación sustituye al actual proceso de revisión mensual, debido a que este no solo permitirá observar los resultados de ventas mensuales, sino que además permitirá evaluar, en primera instancia, el cumplimiento de objetivos como la reducción de ventas perdidas, a través de indicadores en la etapa de control. Estos indicadores reflejan el nivel de cumplimiento en la entrega de pedidos; el nivel de cumplimiento en la reposición de productos y el nivel de cumplimiento en la producción según lo establecido, que permitirán evaluar el resultado operativo de la empresa.

Por otro lado, el proceso de programación y control gestiona los procesos de manufactura basado en las directrices del proceso de planificación. La programación se encargará de realizar un plan a mediano plazo que permita dirigir la carga de trabajo, operadores, máquinas y priorización de
órdenes de producción según la capacidad de la misma. Asimismo, el control se llevará a cabo durante cada operación de manufactura por medio de la actualización de indicadores y la supervisión del maestro de operaciones, basado en lo propuesto por la programación.

Lo mencionado anteriormente se puede observar en el siguiente esquema:

Figura 17: Esquema de relación entre procesos propuestos – Fierrosol S.A.C.

Por medio del esquema mostrado, se observan los sub-procesos de manufactura que conforman el core del negocio y que se rigen por el proceso de programación y control de la producción. Estos a su vez proporcionan información al proceso estratégico de planificación que brinda información para realizar la programación de la producción de acuerdo a la situación dada. De esta manera, se refleja la existencia de una estrecha relación entre los procesos estratégicos y clave, que no modifican los procesos actuales de la empresa, sino que, por el contrario, le agregan valor al proceso productivo.

Si bien el modelo no interviene directamente en los procesos de soporte, estos se interrelacionan con el proceso propuesto compartiendo y recibiendo información que permiten el cumplimiento del fin principal del proyecto.
A continuación, se muestra cómo interactúan todos los procesos identificados en el mapa de procesos, y cuáles son los que comparten y reciben información del proceso de planificación, programación y control de producción.

Figura 18: Flujo de información entre procesos

Fuente: Elaboración propia
A través del flujo se puede observar como los procesos definidos en el mapa de procesos interactúan entre sí. En primer lugar, las flechas con guión hacen referencia a las salidas de información dadas por el proceso de planificación, programación y control de producción. En segundo lugar, las flechas punteadas hacen referencia a la información de entrada hacia el proceso mencionado, puesto que cada proceso de soporte le proporcionará cierta información, mediante la cual se podrá llevar a cabo la planificación y posteriormente programación de la producción. Por último, las flechas sólidas muestran la interacción entre ciertos procesos de soporte, cuya información no representa una entrada o salida al proceso propuesto, pero sí intercambian información que preceden a las que se relacionan directamente con el mismo.
Como se mencionó en el capítulo anterior, la empresa trabaja mediante un sistema híbrido de producción: bajo pedido y para mantener inventarios. El modelo propuesto presenta un flujograma que integra los dos sistemas actuales con el fin de uniformizar las actividades y poder programar y controlar las mismas de manera sencilla y rápida, la cual se presenta a continuación:

Figura 19: Flujo propuesto

Fuente: Elaboración propia
El proceso propuesto inicia con la llegada del cliente, el cual es atendido por los responsables de atención al cliente, y estos cotizan el pedido solicitado en la base de datos. Si el pedido se encuentra en almacén, se solicita el apoyo de despacho para que este prepare y despache el pedido; si el pedido no se encuentra en almacén, se prepara una orden de pedido al responsable de la programación y control, quien debe considerar aspectos como disponibilidad de material, de hombres, máquinas, entre otros:

Figura 20: Flujo del Subproceso de Programación
Tras la realización de la programación, como se observa en el gráfico del flujo principal, se obtienen dos salidas, la fecha de entrega para notificarse a atención al cliente y este pueda coordinar con el cliente; y la orden de producción del pedido del cliente para su fabricación y posterior almacenamiento para despacho.

Finalmente, se elaboró un procedimiento donde se planteen los lineamientos principales del proceso a implementar, el cual se puede observar en el Anexo 40.

3.1.1. Formulación del proceso

De acuerdo con el cronograma del proyecto, durante esta etapa se desarrolló el sistema de programación y control desde el pronóstico de la demanda, utilizando el modelo de suavización exponencial, hasta el programa maestro de producción para llevar el control de entradas y salidas de acuerdo con lo predispuesto en el plan agregado con un horizonte de mediano plazo.

3.1.1.1. Pronóstico de demanda

La utilización de pronósticos considera experiencias pasadas con el objetivo de predecir el futuro; y, por lo general, suelen ser incorrectos ya que es difícil que las ventas sean iguales a la cantidad estimada. Los pronósticos pueden ser cualitativos o cuantitativos; el primero utiliza el juicio e intuición, mientras que el segundo emplea procedimientos matemáticos. Así, uno de los métodos cuantitativos empleados para este proyecto es el de suavización exponencial, el cual asigna a las demandas recientes mayor ponderación que a las demandas anteriores. (2014)

Para este método se necesitan conocer tres datos para efectos del pronóstico: el pronóstico más reciente, la demanda real y una constante de uniformidad alfa, la cual determina la velocidad de reacción a las diferencias entre los pronósticos y ocurrido realmente. Generalmente, cuando la demanda suele ser constante el valor atribuible a alfa es menor en comparación a una demanda con mayor variabilidad; también esto va asociado al error resultante de lo pronosticado respecto a la demanda real, donde se le puede atribuir 0.8 si el error es mayor, ó 0.2 si el error es menor. (2009)

En este sentido, para la proyección del segundo semestre del año 2016, se utilizaron los datos históricos del año precedente con dos fines: poder calcular el valor alfa que permita ajustarse mejor a la realidad y pueda absorber las variaciones bruscas de la demanda; y traer al semestre
del año en estudio, la variación porcentual de incremento y/o decremento presente en cada temporada para facilitar el pronóstico.

La data histórica mencionada se detalla a continuación:

Tabla 52: Demanda histórica 2015 - Familia de planchas

<table>
<thead>
<tr>
<th>MES</th>
<th>P. GALVANICAS</th>
<th>P. AL CALIENTE</th>
<th>P. AL FRIO</th>
<th>P. ESTRIADAS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>1,072</td>
<td>173</td>
<td>33</td>
<td>57</td>
<td>1,335</td>
</tr>
<tr>
<td>FEB</td>
<td>1,008</td>
<td>184</td>
<td>38</td>
<td>36</td>
<td>1,266</td>
</tr>
<tr>
<td>MAR</td>
<td>1,018</td>
<td>104</td>
<td>11</td>
<td>102</td>
<td>1,235</td>
</tr>
<tr>
<td>ABR</td>
<td>1,037</td>
<td>116</td>
<td>19</td>
<td>91</td>
<td>1,263</td>
</tr>
<tr>
<td>MAY</td>
<td>734</td>
<td>359</td>
<td>26</td>
<td>146</td>
<td>1,275</td>
</tr>
<tr>
<td>JUN</td>
<td>1,043</td>
<td>322</td>
<td>10</td>
<td>179</td>
<td>1,554</td>
</tr>
<tr>
<td>JUL</td>
<td>1,081</td>
<td>478</td>
<td>48</td>
<td>68</td>
<td>1,675</td>
</tr>
<tr>
<td>AGO</td>
<td>1,028</td>
<td>667</td>
<td>16</td>
<td>226</td>
<td>1,937</td>
</tr>
<tr>
<td>SET</td>
<td>1,021</td>
<td>563</td>
<td>48</td>
<td>152</td>
<td>1,784</td>
</tr>
<tr>
<td>OCT</td>
<td>1,064</td>
<td>510</td>
<td>10</td>
<td>266</td>
<td>1,850</td>
</tr>
<tr>
<td>NOV</td>
<td>1,072</td>
<td>286</td>
<td>56</td>
<td>234</td>
<td>1,648</td>
</tr>
<tr>
<td>DIC</td>
<td>858</td>
<td>229</td>
<td>45</td>
<td>187</td>
<td>1,318</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12,046</td>
<td>3,991</td>
<td>360</td>
<td>1,744</td>
<td>18,140</td>
</tr>
<tr>
<td>POSICION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 53: Demanda real vs proyectado en el año 2015 - Familia de planchas

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>MES</th>
<th>REAL</th>
<th>PRONOSTICO</th>
<th>VARIACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>ENERO</td>
<td>334</td>
<td>320</td>
<td>-146</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>304</td>
<td>331</td>
<td>-30</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>364</td>
<td>309</td>
<td>60</td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td>333</td>
<td>353</td>
<td>-31</td>
</tr>
<tr>
<td>S5</td>
<td>FEBRERO</td>
<td>321</td>
<td>337</td>
<td>-12</td>
</tr>
<tr>
<td>S6</td>
<td></td>
<td>281</td>
<td>324</td>
<td>-40</td>
</tr>
<tr>
<td>S7</td>
<td></td>
<td>316</td>
<td>290</td>
<td>35</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S8</td>
<td>348</td>
<td>311</td>
<td>32</td>
</tr>
<tr>
<td>S9</td>
<td>315</td>
<td>341</td>
<td>-33</td>
</tr>
<tr>
<td>S10</td>
<td>294</td>
<td>320</td>
<td>-21</td>
</tr>
<tr>
<td>S11</td>
<td>324</td>
<td>299</td>
<td>30</td>
</tr>
<tr>
<td>S12</td>
<td>302</td>
<td>319</td>
<td>-22</td>
</tr>
<tr>
<td>S13</td>
<td>283</td>
<td>305</td>
<td>-19</td>
</tr>
<tr>
<td>S14</td>
<td>341</td>
<td>287</td>
<td>58</td>
</tr>
<tr>
<td>S15</td>
<td>324</td>
<td>330</td>
<td>-17</td>
</tr>
<tr>
<td>S16</td>
<td>315</td>
<td>325</td>
<td>-9</td>
</tr>
<tr>
<td>S17</td>
<td>327</td>
<td>317</td>
<td>12</td>
</tr>
<tr>
<td>S18</td>
<td>312</td>
<td>325</td>
<td>-15</td>
</tr>
<tr>
<td>S19</td>
<td>336</td>
<td>315</td>
<td>24</td>
</tr>
<tr>
<td>S20</td>
<td>300</td>
<td>332</td>
<td>-36</td>
</tr>
<tr>
<td>S21</td>
<td>382</td>
<td>306</td>
<td>82</td>
</tr>
<tr>
<td>S22</td>
<td>410</td>
<td>367</td>
<td>28</td>
</tr>
<tr>
<td>S23</td>
<td>376</td>
<td>401</td>
<td>-34</td>
</tr>
<tr>
<td>S24</td>
<td>386</td>
<td>381</td>
<td>10</td>
</tr>
<tr>
<td>S25</td>
<td>425</td>
<td>385</td>
<td>39</td>
</tr>
<tr>
<td>S26</td>
<td>438</td>
<td>417</td>
<td>13</td>
</tr>
<tr>
<td>S27</td>
<td>419</td>
<td>434</td>
<td>-19</td>
</tr>
<tr>
<td>S28</td>
<td>393</td>
<td>422</td>
<td>-26</td>
</tr>
<tr>
<td>S29</td>
<td>492</td>
<td>399</td>
<td>99</td>
</tr>
<tr>
<td>S30</td>
<td>489</td>
<td>473</td>
<td>-3</td>
</tr>
<tr>
<td>S31</td>
<td>476</td>
<td>486</td>
<td>-13</td>
</tr>
<tr>
<td>S32</td>
<td>480</td>
<td>478</td>
<td>4</td>
</tr>
<tr>
<td>S33</td>
<td>448</td>
<td>480</td>
<td>-32</td>
</tr>
<tr>
<td>S34</td>
<td>452</td>
<td>454</td>
<td>4</td>
</tr>
<tr>
<td>S35</td>
<td>436</td>
<td>452</td>
<td>-16</td>
</tr>
<tr>
<td>S36</td>
<td>448</td>
<td>439</td>
<td>12</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S37</td>
<td>463</td>
<td>446</td>
</tr>
<tr>
<td>S38</td>
<td>476</td>
<td>460</td>
</tr>
<tr>
<td>S39</td>
<td>459</td>
<td>473</td>
</tr>
<tr>
<td>S40</td>
<td>452</td>
<td>462</td>
</tr>
<tr>
<td>S41</td>
<td>411</td>
<td>454</td>
</tr>
<tr>
<td>S42</td>
<td>428</td>
<td>420</td>
</tr>
<tr>
<td>S43</td>
<td>417</td>
<td>426</td>
</tr>
<tr>
<td>S44</td>
<td>392</td>
<td>419</td>
</tr>
<tr>
<td>S45</td>
<td>342</td>
<td>397</td>
</tr>
<tr>
<td>S46</td>
<td>336</td>
<td>353</td>
</tr>
<tr>
<td>S47</td>
<td>315</td>
<td>339</td>
</tr>
<tr>
<td>S48</td>
<td>325</td>
<td>320</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Debido a la alta variabilidad de la demanda se utilizó un alfa de 0.8 para absorber estas fluctuaciones y minimizar el error del pronóstico, y obtener un pronóstico más cercano a la realidad como se evidencia en el gráfico anterior. El error promedio del pronóstico es de 29 unidades con una desviación estándar de 36 unidades, por la distribución normal que presentan estas variaciones, de acuerdo con la ecuación mostrada en la ecuación 3 del anexo 41. Esta misma simulación se hizo para el primer semestre del año 2016, e inicios de la primera semana del segundo semestre, incluyendo esta vez un valor delta para absorber las variaciones hacia arriba o hacia abajo de las tendencias de la demanda real como se observa en la ecuación 2 del anexo 41:

Tabla 54: Demanda real vs proyectado en el año 2016 - Familia de planchas

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>SEMANA</th>
<th>MES</th>
<th>REAL</th>
<th>PRONOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>515</td>
<td></td>
<td>ENERO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td></td>
<td>131</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td></td>
<td>124</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td></td>
<td>138</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td></td>
<td>122</td>
<td>123</td>
</tr>
<tr>
<td>605</td>
<td></td>
<td>FEBRERO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td></td>
<td>158</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td></td>
<td>145</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>S7</td>
<td></td>
<td>148</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td></td>
<td>154</td>
<td>150</td>
</tr>
<tr>
<td>623</td>
<td></td>
<td>MARZO</td>
<td>149</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td></td>
<td>S11</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>606</td>
<td></td>
<td></td>
<td></td>
<td>ABRIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1562</td>
<td></td>
<td></td>
<td></td>
<td>MAYO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1829</td>
<td></td>
<td></td>
<td></td>
<td>JUNIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td>JULIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2342</td>
<td></td>
<td></td>
<td></td>
<td>AGOSTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2157</td>
<td></td>
<td></td>
<td></td>
<td>SETIEMBRE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2237</td>
<td></td>
<td></td>
<td></td>
<td>OCTUBRE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td>NOVIEMBRE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1594</td>
<td></td>
<td></td>
<td></td>
<td>DICIEMBRE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Como se observa, la demanda proyectada para la primera semana del mes de agosto son 530 unidades considerando posteriormente una demanda constante a fin de facilitar el posterior plan agregado que veremos en breve. La demanda total resaltada de color rojo, se obtuvo basado en la proporción de la tendencia del año 2015, ya que el pronóstico se mantiene de acuerdo a la temporada. Se consideró un valor de alfa 0.8 y beta 0.2, obteniendo el siguiente gráfico:

Figura 22: Tendencia de la Demanda del año 2016

Como se observa en el gráfico anterior, el valor delta para ajustar el efecto de las tendencias, nos permite obtener valores pronosticados más cercanos a la demanda real. De igual manera, la persona que pronostica debe estar haciendo constantemente seguimiento a la demanda real para poder ir ajustando las constantes de suavización según corresponda.

3.1.1.2. Plan Agregado

La planificación agregada permite determinar la fuerza laboral, la cantidad de producción y niveles de inventario con el fin de satisfacer la demanda para un horizonte de mediano plazo. Asimismo, el término agregado indica que la planificación no desglosa la producción por detalle de productos sino que agrupa por familias, sin importar las diferentes variantes de diseño o modelo. (2010)
Así, el plan agregado utilizado para la empresa considera el pronóstico dado en el punto anterior para el mes de agosto dividido por semanas; el stock de planchas en ese momento, e información relevante que servirá para los fines de programación correspondientes. Debemos considerar lo siguiente:

Días útiles laborales: 06 días

Operadores disponibles: 06 operadores

Stock de planchas: 300 planchas para la primera semana de agosto

Stock de seguridad: 131 planchas (detallado posteriormente)

Capacidad: 294 hr-semana (lunes a viernes: 09 hr-hh día / sábados: 04 hr-hh día)

Costo hora regular: S/.5 soles-hr-hh

Costo hora extra: S/. 6.25 soles-hr-hh

Tiempo de aprovisionamiento: 03 días calendarios

Requerimiento diario promedio: 92 planchas-día

Tiempo de ciclo: 02 min/pieza (incluye marcado, corte y picking)

Medida plancha estándar: 1200x2400 mm

Por otro lado, debemos considerar que si bien el plan agregado, al igual que el pronóstico, considera a las planchas como unidad de medida; el plan maestro de producción (PMP) que será mostrado posteriormente, considera como unidad de medida a las piezas obtenidas de estas. En este sentido, se observa a continuación a modo de ejemplo los pedidos reales recibidos para el servicio de corte por el área de operaciones durante la primera semana de agosto, y cómo se elaborará en un inicio el plan agregado y posteriormente el plan maestro:

Tabla 55: Requerimientos para los pedidos con corte galvanizado

<table>
<thead>
<tr>
<th>Pedido</th>
<th>Pieza (mm)</th>
<th>Pza/plancha</th>
<th>Total Pzas</th>
<th>Horas Prod.</th>
<th>Planchas Req.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>400 600</td>
<td>12</td>
<td>80</td>
<td>2.7</td>
<td>7</td>
</tr>
<tr>
<td>#2</td>
<td>600 800</td>
<td>6</td>
<td>50</td>
<td>1.7</td>
<td>9</td>
</tr>
<tr>
<td>#3</td>
<td>1200 1200</td>
<td>2</td>
<td>30</td>
<td>1.0</td>
<td>15</td>
</tr>
<tr>
<td>#4</td>
<td>1200 600</td>
<td>4</td>
<td>60</td>
<td>2.0</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL SEMANA | **220** | **7.3** | **46**

Fuente: Elaboración propia
Como se observa, en total los pedidos para el servicio de corte de planchas requieren 28 horas hombre aproximadamente y demandan 151 planchas.
Asimismo, de acuerdo con la ecuación 4 indicada en el anexo 41 para el cálculo del inventario de seguridad, y bajo una probabilidad del 95% en la cual el stock no se agote hasta la reposición del pedido, tenemos unas existencias de 131 planchas como inventario de seguridad. Dicho esto, se detalla el plan agregado considerando solo este caso a modo de ejemplo (en una semana la cantidad de pedidos recibidos es superior a la mostrada, por ello este modelo se complementa y recibe soporte de la herramienta Excel diseñada para estos fines):
De esta manera, el plan agregado le da al programador una visión macro de todos los pedidos que semanalmente se reciben, y poder pasar ahora al siguiente nivel: el programa maestro de producción.

3.1.1.3. Programa maestro de produccion

Tras obtener el plan agregado anteriormente, el programa maestro de producción permite disgregar la información recibida ya no por familias, sino por productos. El objetivo de este es poder establecer y procurar una adecuada asignación y ordenamiento de los recursos disponibles en el tiempo. (2010)

Así, la unidad de medida, a diferencia del plan agregado, es la cantidad de piezas que ingresan y salen según el requerimiento dado. Por ejemplo, para el caso anterior tenemos un pedido de 220 piezas en total de 04 pedidos distintos para el servicio de corte galvanizado. De esta manera, el despliegue del plan maestro se desarrolla como se observa a continuación:
Lote estándar: 280 planchas

Lote galvanizado: 185 planchas (Según data histórica incluyendo la más reciente)

Tiempo de aprovisionamiento: 03 días

Tabla 60: PMP Planchas Galvanizadas - Agosto

<table>
<thead>
<tr>
<th>Piezas</th>
<th>SEMANA 1</th>
<th>SEMANA 2</th>
<th>SEMANA 3</th>
<th>SEMANA 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lote estándar</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Del pronóstico observado, se despliegan los 04 pedidos, cada uno con diferente stock disponible, y tamaño de lote que dependen de las dimensiones de cada tipo de pieza. A continuación, se observa el plan maestro para la primera quincena de agosto:

Tabla 61: PMP para plancha galvanizada de medidas 400x600 mm

<table>
<thead>
<tr>
<th>Pedido 1: 400x600mm</th>
<th>1RA QUINCENA DE AGOSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEMANA 1</td>
</tr>
<tr>
<td>Pronóstico</td>
<td></td>
</tr>
<tr>
<td>Demanda</td>
<td></td>
</tr>
<tr>
<td>Disponible proyectado</td>
<td></td>
</tr>
<tr>
<td>Necesidades netas</td>
<td></td>
</tr>
<tr>
<td>Entrada de pedidos</td>
<td></td>
</tr>
<tr>
<td>Expedición de pedidos</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 62: PMP para plancha galvanizada de medidas 600x800 mm

<table>
<thead>
<tr>
<th>Pedido 2: 600x800mm</th>
<th>1RA QUINCENA DE AGOSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEMANA 1</td>
</tr>
<tr>
<td>Pronóstico</td>
<td></td>
</tr>
<tr>
<td>Demanda</td>
<td></td>
</tr>
<tr>
<td>Disponible proyectado</td>
<td></td>
</tr>
<tr>
<td>Necesidades netas</td>
<td></td>
</tr>
<tr>
<td>Entrada de pedidos</td>
<td></td>
</tr>
<tr>
<td>Expedición de pedidos</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
La misma operación se dará para los otros 03 pedidos indicados anteriormente, cada uno con piezas de dimensiones y requerimiento de planchas diferentes. El plan maestro es una herramienta muy útil para el programador, sobre todo para este tipo de escenarios en el cual se identifican una cantidad considerable de tipos de productos donde existe un denominador común, en este caso, las planchas.
3.1.1.4. Gestión de inventarios

Para el proceso implementado fue necesario involucrar también al área de compras quien se encarga del suministro de los lotes solicitados por el programador de la producción. En este sentido, para poder definir el lote óptimo, previamente se tuvo que dar el levantamiento de información y clasificar las familias de productos establecer el modelo a utilizar. Por ello, se decidió utilizar la matriz de Kraljic que permite diferenciar la gestión de productos considerando la relación entre el comprador y proveedor, y busca minimizar el riesgo en el abastecimiento y dar mayor poder al comprador.

De esta manera, vamos a clasificar la familia de productos en la matriz, y a continuación explicar el plano de cada uno:

Figura 23: Matriz de Kraljic – Fierrosol S.A.C.

<table>
<thead>
<tr>
<th>Impacto Financiero</th>
<th>Complejidad del Suministro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productos Apalancados</td>
<td>Productos Estratégicos (Proyectos de gran magnitud)</td>
</tr>
<tr>
<td>✓ Planchas</td>
<td>✓ Otros</td>
</tr>
<tr>
<td>✓ Tubos</td>
<td></td>
</tr>
<tr>
<td>Productos Rutinarios</td>
<td>Productos Cuello de botella (Estructurales)</td>
</tr>
<tr>
<td>✓ Ángulos</td>
<td>✓ Barandas</td>
</tr>
<tr>
<td>✓ Canales</td>
<td>✓ Perfiles</td>
</tr>
<tr>
<td>✓ Platinas</td>
<td>✓ Láminas de acero inoxidable</td>
</tr>
<tr>
<td>✓ Barras</td>
<td>✓ Discos</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Productos Apalancados:

Son aquellos productos que se compran en grandes cantidades, y cualquier variación en el precio representa un ahorro significativo. Por lo general tiene varios proveedores disponibles en el mercado, y representan un beneficio positivo para la economía de la empresa. En este campo se identifica a la familia de planchas y tubos, ya que representan un porcentaje considerable en las ventas de la empresa y existen proveedores suficientes de los mismos. A este grupo se le hará un seguimiento continuo.

Productos Estratégicos:

Son productos que requieren alianzas estratégicas con los proveedores y representan un beneficio positivo para la economía de la empresa. En este campo se identifica los proyectos donde la empresa obtiene la buena pro y durante el año son muy puntuales. A este grupo se le hará un seguimiento continuo.

Productos Rutinarios:

Son aquellos productos que no tienen un impacto financiero grande para la empresa pero si existen proveedores suficientes para el suministro de los mismos. Esto se puede evidenciar en los ángulos, canales, platinas, barras y discos que representan un porcentaje mínimo en las ventas de la empresa. A este grupo se le hará un seguimiento periódico.

Productos cuello de botella:

Son aquellos productos estructurales que ofrece la empresa como barandas, perfiles y láminas en los que el suministro es más complejo en comparación de las planchas y tubos por ejemplo, y además no generan grandes beneficios económicos para la empresa. A este grupo se le hará un seguimiento continuo.
De esta manera, tenemos en síntesis la siguiente clasificación:

Tabla 65: Matriz de Kraljic – Fierrosol S.A.C.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Cantidad</th>
<th>Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apalancado</td>
<td>2</td>
<td>Continuo</td>
</tr>
<tr>
<td>Rutinario</td>
<td>5</td>
<td>Periodico</td>
</tr>
<tr>
<td>Estratégicos</td>
<td>1</td>
<td>Continuo</td>
</tr>
<tr>
<td>Cuello de Botella</td>
<td>3</td>
<td>Continuo</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Para el cuadrante de productos apalancados donde se encuentra la familia en estudio, la gestión de inventarios partirá calculando el lote óptimo establecido y el tiempo entre pedidos, los cuales se obtienen como se muestra en el anexo 41. De esta manera, considerando la demanda anual proyectada (18,238 planchas), el costo de ordenamiento (S/. 5,565 soles), y el costo de mantenimiento anual (S/. 2,595 soles); se obtiene un lote óptimo de 280 planchas y 06 días entre órdenes de pedido.

Por otro lado, para llevar un control de los mismos, se elaboró una tabla para el control de los inventarios semanalemente considerando la siguiente información:

Tabla 66: Control de inventarios – Registro final

<table>
<thead>
<tr>
<th>MES</th>
<th>SEMANA</th>
<th>INV. SEGURIDAD</th>
<th>INV. INICIAL</th>
<th>VENTAS</th>
<th>DISPONIBLE</th>
<th>CANTIDAD DE PEDIDOS</th>
<th>TAMANO DE LOTE</th>
<th>INPUT</th>
<th>INV. MAXIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGOSTO</td>
<td>1</td>
<td>131</td>
<td>1703</td>
<td>590</td>
<td>1113</td>
<td>3</td>
<td>280</td>
<td>840</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>131</td>
<td>1822</td>
<td>606</td>
<td>1216</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>131</td>
<td>1645</td>
<td>581</td>
<td>1064</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>131</td>
<td>1493</td>
<td>561</td>
<td>932</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td>SETIEMBRE</td>
<td>5</td>
<td>131</td>
<td>1361</td>
<td>511</td>
<td>850</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>131</td>
<td>1279</td>
<td>530</td>
<td>749</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>131</td>
<td>1178</td>
<td>505</td>
<td>673</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>131</td>
<td>1102</td>
<td>537</td>
<td>565</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td>OCTUBRE</td>
<td>9</td>
<td>131</td>
<td>994</td>
<td>562</td>
<td>432</td>
<td>3</td>
<td>280</td>
<td>840</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>131</td>
<td>1141</td>
<td>536</td>
<td>605</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>131</td>
<td>1034</td>
<td>550</td>
<td>484</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>131</td>
<td>913</td>
<td>561</td>
<td>352</td>
<td>2</td>
<td>280</td>
<td>560</td>
<td>1991</td>
</tr>
<tr>
<td>NOVIEMB</td>
<td>13</td>
<td>131</td>
<td>781</td>
<td>487</td>
<td>294</td>
<td>3</td>
<td>280</td>
<td>840</td>
<td>1991</td>
</tr>
</tbody>
</table>
Esta tabla se acompañó junto con el siguiente gráfico que permitía observar el movimiento de los
inventarios respecto a las ventas reales, considerando el inventario mínimo y máximo como
alertas para el programador:

Figura 24: Control de inventarios

Se observa que para las últimas semanas el inventario cayó debido a que la demanda iba
decreciendo, por lo cual no era necesario solicitar más pedidos para no sobrestockearse
considerando que el primer cuatrimestre siguiente es de temporada baja. Así, estos controles
apoyados del excel diseñado, permitió al área de compras cumplir con los requerimientos de
programación y control, y mitigar los problemas identificados inicialmente.
3.1.1.5. Indicadores

Para poder medir el proceso implementado y como parte de retroalimentación a la empresa, se diseñaron e implementaron los siguientes indicadores. Los cuáles serán controlados y calculados por el responsable del PCP a través de la herramienta en Excel y con una frecuencia de reporte mensual.

Nivel de Servicio

Con este indicador se obtiene el porcentaje de pedidos de planchas entregados a tiempo.

La fórmula de cálculo es la siguiente.

\[
\text{Nivel de Servicio} = \frac{\text{Cantidad de Pedidos entregados a tiempo}}{\text{Cantidad de Pedidos}} \times 100
\]

Productividad

Este indicador busca controlar la producción de cada trabajador en base al tiempo de ciclo habitual (03 planchas/hora hombre).

La fórmula de cálculo es la siguiente.

\[
\text{Productividad} = \frac{\text{Cantidad de planchas procesadas}}{\text{Hora hombre}}
\]

Capacidad Utilizada

Este indicador obtiene el porcentaje de utilización de la capacidad de producción para planchas, y asimismo conocer la capacidad no utilizada para asignarla a otras tareas de ser necesarias.
La fórmula de cálculo es la siguiente.

\[
\text{Capacidad Utilizada} = \frac{\text{Demanda Real}}{\text{Capacidad de Producción}} \times 100
\]

Nivel de cumplimiento de abastecimiento

Este indicador determina el porcentaje de pedidos de suministros recibidos a tiempo.

La fórmula de cálculo es la siguiente.

\[
\text{Nivel de cumplimiento de abastecimiento} = \frac{\text{Cantidad de lotes de suministros recibidos a tiempo}}{\text{Cantidad de lotes de suministros solicitados}} \times 100
\]

Por medio de estos indicadores, se realizará seguimiento de forma mensual a partir de la prueba piloto en el mes de Julio.

3.2. Plan de implementación del proceso de planificación, programación y control

Tras haber observado cómo el proceso propuesto interactúa con todos los demás procesos actuales de la empresa; se desarrollará a continuación el programa para lograr la implementación del mismo que consiste en la definición, secuencia y duración de actividades; costos asociados a la ejecución del modelo propuesto; recursos necesarios para lograrlo; los posibles riesgos asociados a esta etapa y finalmente, el cronograma de la fase de ejecución.
3.2.1. EDT Fase de Ejecución

A continuación, se muestra la estructura de Desglose de Trabajo (EDT) de la fase de ejecución del proyecto, el cual consta 3 entregables y 11 paquetes de trabajo para esta fase.

Figura 25: Estructura de Desglose de Trabajo de la fase de ejecución

3.2.2. Actividades programadas

Las actividades planteadas por el grupo del proyecto están agrupadas por tipo de entregable, de acuerdo a lo observado en la estructura de desglose de trabajo (EDT) mostrada anteriormente. La fase de ejecución consta de 22 actividades listadas a continuación:
<table>
<thead>
<tr>
<th>Código</th>
<th>Actividad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.</td>
<td>1</td>
<td>Establecer cantidad de hombres requeridos</td>
</tr>
<tr>
<td>10.1.2.</td>
<td>2</td>
<td>Establecer cantidad de máquinas requeridas</td>
</tr>
<tr>
<td>10.2.1.</td>
<td>3</td>
<td>Establecer inventario inicial</td>
</tr>
<tr>
<td>10.2.2.</td>
<td>4</td>
<td>Establecer inventario mínimo para reposición</td>
</tr>
<tr>
<td>10.3.1.</td>
<td>5</td>
<td>Establecer parámetros para hoja de requerimientos de producción</td>
</tr>
<tr>
<td>10.4.1.</td>
<td>6</td>
<td>Establecer indicadores de producción</td>
</tr>
<tr>
<td>10.5.1.</td>
<td>7</td>
<td>Diseñar hoja de cálculo para Plan de recursos productivos</td>
</tr>
<tr>
<td>10.5.2.</td>
<td>8</td>
<td>Diseñar hoja de cálculo para Inventarios</td>
</tr>
<tr>
<td>10.5.3.</td>
<td>9</td>
<td>Diseñar hoja de cálculo para Hoja de requerimientos</td>
</tr>
<tr>
<td>10.5.4.</td>
<td>10</td>
<td>Diseñar hoja de cálculo para Indicadores</td>
</tr>
<tr>
<td>11.1.1.</td>
<td>11</td>
<td>Capacitar al personal sobre el flujo del proceso</td>
</tr>
<tr>
<td>11.1.2.</td>
<td>12</td>
<td>Capacitar al personal sobre el manejo del Excel de Operaciones</td>
</tr>
<tr>
<td>11.2.1.</td>
<td>13</td>
<td>Ejecutar proceso propuesto</td>
</tr>
<tr>
<td>11.3.1.</td>
<td>14</td>
<td>Realizar control y seguimiento al proceso propuesto</td>
</tr>
<tr>
<td>11.3.2.</td>
<td>15</td>
<td>Realizar control y seguimiento al personal</td>
</tr>
<tr>
<td>11.4.1.</td>
<td>16</td>
<td>Medir resultados a través de los indicadores</td>
</tr>
<tr>
<td>11.4.2.</td>
<td>17</td>
<td>Establecer acciones de mejora</td>
</tr>
<tr>
<td>12.1.1.</td>
<td>18</td>
<td>Ejecutar el modelo ajustado</td>
</tr>
<tr>
<td>12.2.1.</td>
<td>19</td>
<td>Evaluar cumplimiento de requisitos</td>
</tr>
<tr>
<td>12.2.2.</td>
<td>20</td>
<td>Evaluar impactos</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

De esta manera, se elaboró una red de actividades con la intención de mostrar la secuencia y duración de las mismas que componen cada entregable de la fase de ejecución.

En la etapa de diseño se encuentran aquellas actividades que permiten establecer índices de mano de obra, máquinas y duración; así como la disponibilidad de inventarios y el establecimiento de periodos para el punto de reposición para una adecuada programación de operaciones. Así, tiene como entregable principal la herramienta para la programación y control que será diseñada en una hoja de cálculo donde se encuentran los formatos para el cálculo inmediato de lo mencionado, así como la formación de indicadores puntuales y de fácil aplicación para el control de operaciones y el diseño de la orden de producción.

La secuencia de actividades se muestra a continuación:
Figura 26: Secuencia de actividades – Etapa de Diseño

Actividad N° 01: Establecer cantidad de hombres requeridos

Para poder establecer la cantidad de hombres requeridos para la operación escogida, los responsables del proyecto deberán conversar con el maestro de operaciones para poder establecer una cantidad promedio de hombres requeridos por operación, ya que existen muchos servicios y la cantidad de productos a fabricar son indeterminados, lo cual dificulta para una pequeña empresa establecer un índice general por tipo de familia. De esta manera, se puede estimar el tiempo promedio que demanda la operación, tomando en cuenta que el promedio es representativo, ya que como se dijo dependerá únicamente de la demanda por lo cual, se posee una hoja de cálculo en Excel que permita el cálculo sencillo para el ejecutor.

Actividad N° 02: Establecer cantidad de máquinas requeridas

De igual manera a la actividad anterior, se deberá conversar con el maestro de operaciones para poder determinar la cantidad de máquinas requeridas por operación, tomando en cuenta además la cantidad de hombres que pueden maniobrarla. De la misma forma, se posee una hoja de cálculo en Excel que permita el cálculo sencillo para el ejecutor.
Actividad N° 03: Establecer inventario inicial

Los responsables del proyecto deberán determinar el stock inicial de planchas que posee la empresa con ayuda del encargado del almacén. Estos poseerán un formato en el que manualmente deberán ir separando y registrando lo observado, con el fin de ingresar los datos a la hoja de cálculo en Excel diseñado para poder posteriormente determinar el inventario final, así como el punto de reposición. Por ello, se dice que esta actividad es el punto de partida para el control de inventarios.

Actividad N° 04: Establecer inventario mínimo para reposición

Tras determinar el inventario inicial y colocar los datos en la hoja de cálculo mencionada, el inventario final se determinará automáticamente por el ejecutor de la hoja de cálculo conforme se vayan ingresando los nuevos volúmenes requeridos de producción. Una vez determinado el primer stock final del día, los responsables del proyecto así como el encargado de almacén, deberán confirmar lo determinado por el Excel contra la disponibilidad de productos en almacén. Si todo está conforme, se levantará la veracidad del cálculo del inventario final. Asimismo, se establecerá un inventario mínimo para la reposición de los mismos por tipo de plancha. La herramienta dará una alerta cada vez que en la evolución de inventarios se sobrepase el nivel mínimo de inventarios, por lo cual el ejecutor deberá emitir una orden de compra.

Actividad N° 05: Establecer parámetros para hoja de requerimientos de producción

Los responsables del proyecto junto con el ejecutor del libro Excel propuesto, deberán establecer los parámetros que crean convenientes para la creación de la orden de pedido de producción u hoja de requerimientos, la cual será diseñada en la hoja de cálculo y tiene por objetivo la fácil comprensión del maestro de operaciones con los requerimientos del cliente, así como los operadores, duración, entre otros que implica la producción de planchas solicitadas.

Actividad N° 06: Establecer indicadores de producción

Los responsables del proyecto junto con el maestro de operaciones y el dueño, deberán determinar objetivos específicos que tendrá el área de operaciones respecto a la producción de planchas y otros productos a futuro. Para ello, los responsables del proyecto deberán coordinar
una reunión para establecer lo mencionado, y posteriormente deberán diseñar en una hoja de cálculo en Excel los indicadores que reflejen dichos objetivos. La interpretación de los indicadores así como su manejo, deberán ser los más sencillos posibles tanto para el ejecutor como para el maestro y el dueño en cuanto a su comprensión.

Actividad N° 07: Diseñar hoja de cálculo para plan de recursos productivos

Luego de haber hallado los índices de mano de obra, máquinas y duración de la operación en una hoja de cálculo, los responsables del proyecto deberán diseñar un formato adecuado que involucre los tres índices y se reflejen a modo de resumen los requerimientos del cliente para el área de operaciones de acuerdo al volumen solicitado, y de esta manera permita la posterior programación que hará el maestro de operaciones.

Actividad N° 08: Diseñar hoja de cálculo para inventarios

De la misma forma que el diseño del plan de recursos productivos en la hoja de cálculo, los responsables del proyecto deberán hacer lo propio para el control de los inventarios tomando como entradas el stock inicial, final y punto de reposición de los mismos.

Actividad N° 09: Diseñar hoja de cálculo para hoja de requerimientos

Luego de establecer los parámetros que deben reflejarse en la hoja de requerimientos, los responsables del proyecto deberán también diseñar una hoja de cálculo que permita al maestro de operaciones poder interpretar en una hoja resumen todas las tareas que deberá dirigir y supervisar en el área, así como también una sencilla programación de la misma.

Actividad N° 10: Diseñar hoja de cálculo para Indicadores

Tras haber establecido los indicadores de producción para la medición del proceso. El primer paso de esta actividad será diseñar el formato en Excel, en el cual se hallará el indicador. Este formato será una tabla, donde se colocarán ciertos datos que permitirán hallar el resultado del indicador y en la cual los resultados se puedan registrar por un gran periodo de tiempo. El segundo paso es ir evaluando el formato haciendo pruebas con datos aleatorios para ir ajustando su estructura. El grupo del proyecto es el responsable de diseñar el formato, en total esta actividad tomará 6 horas.
En la etapa Piloto se encuentran las actividades de capacitación que permitan en primer lugar explicar y adoptar el nuevo flujo del proceso propuesto a todo el personal de la empresa, para luego poder capacitar a los responsables de la herramienta Excel sobre su manejo y ejecución. Luego de que el personal haya madurado los conceptos y herramienta, se comenzará la corrida de la prueba piloto que permitirá identificar los puntos de mejora en el proceso propuesto, a través del control con indicadores.

La secuencia de actividades se muestra a continuación:

![Figura 27: Secuencia de actividades – Etapa Piloto](image)

Fuente: Elaboración propia

Actividad N° 11: Capacitar al personal sobre el flujo del proceso

Esta capacitación consiste en introducir y enseñar al personal de la empresa todo lo relacionado al proceso a implementar. Por ello, mediante una presentación en diapositivas a través de la herramienta de Power Point, serán expuestas a los asistentes, en estas estarán detalladas toda la información referente al proceso de Planificación, Programación y Control de producción y los cambios en el flujo de información; pero la información contenida en la presentación será lo más concisa y sencilla posible. Al terminar la capacitación, se realizarán preguntas a los asistentes, así como estos pueden generar consultas, con la finalidad de que cualquier duda sea aclarada. La capacitación se realizará en 2 días al terminar la jornada de trabajo en la empresa, aproximadamente a las 6:00 pm, cuya duración será de 2 horas. Los responsables de preparar y dictar la capacitación son el grupo del proyecto.
Actividad N° 12: Capacitar al personal sobre el manejo del Excel de Operaciones

Esta capacitación consiste en enseñar al personal de la empresa a utilizar la hoja de cálculo de Excel, que contiene todos los formatos relacionados al proceso a implementar. De esta manera, con una presentación en diapositivas realizada a través de la herramienta de Power Point, se expondrá a los asistentes sobre el manejo de la hoja de cálculo de Excel. La presentación detallará paso a paso los datos a ser completados para que el formato respectivo haga los cálculos necesarios. Al terminar la capacitación, se realizarán preguntas a los asistentes, así como estos pueden generar consultas, con la finalidad de que cualquier duda sea aclarada. La capacitación se realizará en 2 días al terminar la jornada de trabajo en la empresa, y finalizando la capacitación del flujo del proceso que culminará aproximadamente a las 8:00 pm, cuya duración será de 2 horas. Los responsables de preparar y dictar la capacitación son el grupo del proyecto.

Actividad N° 13: Ejecutar proceso propuesto

Para ejecutar el proceso, las capacitaciones deben estar finalizadas. A partir de ello, se dará inicio a la puesta en marcha del piloto del proceso propuesto. La ejecución del piloto estará a cargo del grupo del proyecto y la participación de los involucrados de la empresa, por lo que durante toda esta etapa el grupo del proyecto irá a visitar la empresa diariamente. Las visitas tendrán una duración de 2 horas, y serán por 7 días. La ejecución iniciará completando cada formato de la hoja de cálculo junto con la persona responsable del proceso, el dueño, el maestro de operaciones, el responsable de almacén y la encargada de logística. Finalmente, mediante los resultados obtenidos en los archivos de Excel se deberá proceder a indicar la producción a realizar.

Actividad N° 14: Realizar control y seguimiento al proceso propuesto

Mientras se esté ejecutando el proceso propuesto, el grupo del proyecto deberá analizar y tomar en cuenta cada detalle presentado durante la ejecución. Por ello, cada integrante irá tomando nota de todo lo observado en los cuadernillos para posteriormente examinar lo encontrado. A esta actividad se le dedicará 1 hora, y será por 7 días. Además, será aprovechado este tiempo para atender y apoyar al personal de la empresa ante cualquier duda que surja acerca del proceso propuesto.
Actividad N° 15: Realizar control y seguimiento al personal

Mientras se esté ejecutando el piloto del proceso, el grupo del proyecto analizará el comportamiento del personal sobre el proceso implementado. Por ello, cada integrante del grupo tomará notas y hará consultas al personal para saber cómo se sienten estos respecto al proceso diseñado. A esta actividad se le dedicará 1 hora, y será por 7 días. Además, será aprovechado este tiempo para atender y apoyar al personal de la empresa ante cualquier duda que surja acerca del proceso propuesto.

Actividad N° 16: Medir resultados a través de los indicadores

Una vez terminado de ejecutarse el piloto del proceso propuesto, se deberá realizar la medición de los resultados a través de los indicadores. Por ello, el grupo del proyecto junto con el responsable del proceso y utilizando el formato en Excel, se completarán los datos requeridos para calcular los indicadores establecidos. Los resultados serán mostrados al dueño para su análisis respectivo. Esta actividad se realizará en 3 horas.

Actividad N° 17: Establecer acciones de mejora

Tras evaluar los resultados de los indicadores. Se deberá identificar los puntos débiles encontrados durante la ejecución de prueba, para a partir de ello establecer acciones de mejora mediante las cuales el modelo será ajustado. Esta actividad será realizada por el grupo del proyecto en un tiempo de 4 horas, ya que se tomará en cuenta todas observaciones encontradas, para modificar los formatos en la hoja de Excel de ser necesario.

En la etapa de implementación, se recaban los resultados y acciones de mejora de la etapa piloto para luego poder implementar el proceso de planificación, programación y control en la empresa. Tras la implementación se procederá a evaluar el cumplimiento de requisitos de los interesados del proyecto y los impactos que pueda tener el proceso en la empresa.

La secuencia de actividades se muestra a continuación:
Figura 28: Secuencia de actividades – Etapa de Implementación

<table>
<thead>
<tr>
<th>Actividad N° 18: Ejecutar el modelo ajustado</th>
</tr>
</thead>
</table>
Con las acciones de mejora aplicadas al modelo diseñado. Se iniciará la implementación del proceso. Como ya se han realizado las capacitaciones y el piloto, la empresa estará encargada de toda esta ejecución; mientras que el grupo del proyecto hará visitas periódicamente para observar el desempeño de la empresa con el proceso implementado. Las visitas tendrán una duración de 1 hora aproximadamente, para continuar con el seguimiento al proceso y serán realizadas por 14 días.

Actividad N° 19: Evaluar cumplimiento de requisitos

Una vez culminada la implementación del proceso. Se deberá verificar el cumplimiento de los requisitos identificados inicialmente por cada interesado. Para ello, se evaluarán los resultados obtenidos con la implementación, y se alineará estos con los requisitos identificados. Finalmente, será calculado el porcentaje de cumplimiento a cada requisito identificado inicialmente. Esta actividad tomará 1 hora diaria durante 9 días.

Actividad N° 20: Evaluar impactos

La evaluación de los impactos ambientales, económicos y sociales será realizada tras la implementación del proceso de planificación, programación y control de producción. Por ello, se analizará cada uno de estos factores para identificar el impacto que ha tenido el proceso dentro
de la empresa. Esta evaluación formará parte del penúltimo capítulo de tesis, y esta actividad tomará 2 horas diarias durante 1 semana, ya que esta evaluación será realizada y redactada a detalle, pues pertenece al contenido de un capítulo del curso.

3.2.3. Cronograma fase de Ejecución del Proyecto

A continuación, se muestra el cronograma de la fase de ejecución que está basado en las fechas estimadas de inicio y fin establecidas en el capítulo anterior. A partir del cronograma, se podrá evaluar el cumplimiento de cada actividad involucrada en esta fase.

Figura 29: Cronograma de la fase de Ejecución

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIO</td>
<td></td>
</tr>
<tr>
<td>JULIO</td>
<td></td>
</tr>
<tr>
<td>AGOSTO</td>
<td></td>
</tr>
<tr>
<td>SETIEMBRE</td>
<td></td>
</tr>
<tr>
<td>NOVIEMBRE</td>
<td></td>
</tr>
<tr>
<td>DICIEMBRE</td>
<td></td>
</tr>
</tbody>
</table>

1. DISEÑO

- Plan de recursos productivos
- Establecer cantidad de máquinas requeridas
- Establecer cantidad de herramientas requeridas
- Inventarios
- Establecer inventario inicial
- Establecer inventario mínimo para reposición
- Hoja de requerimientos
- Establecer parámetros para hoja de requerimientos de producción
- Indicadores
- Establecer indicadores de producción
- Excel de Operaciones
 - Diseñar hoja de cálculo para Plan de recursos productivos
 - Diseñar hoja de cálculo para Inventarios
 - Diseñar hoja de cálculo para Hoja de requerimientos
 - Diseñar hoja de cálculo para Indicadores

2. PILOTO

- Capacitación al personal sobre el flujo del proceso
- Capacitación al personal sobre el manejo del Excel de Operaciones
- Ejecución
 - Ejecutar proceso propuesto
- Control
 - Realizar control y seguimiento del proceso propuesto
 - Realizar control y seguimiento al personal
- Evaluación de resultados
 - Medir resultados a través de los indicadores
 - Establecer acciones de mejora

3. IMPLEMENTACIÓN

- Puesta en marcha
- Ejecutar el modelo ajustado
- Validación
 - Evaluar cumplimiento de requisitos
 - Evaluar impactos

Figura 29 (continued):

<table>
<thead>
<tr>
<th>CRONOGRAFÍA 2016: EJECUCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES</td>
</tr>
<tr>
<td>SEMANA</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
3.2.4. Riesgos identificados

Dentro de la fase de ejecución del proceso propuesto, existen riesgos que pueden afectar el desarrollo de esta. Por ello, se realizó una lluvia de ideas y consultas con expertos, para identificar los riesgos relacionados a esta etapa del proyecto, estos están listados a continuación.

Tabla 68: Riesgos de la fase de ejecución

<table>
<thead>
<tr>
<th>Nro.</th>
<th>Riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>El cálculo de los datos requeridos para diseñar la hoja en Excel resulte erróneo, lo que puede ocasionar que los formatos a establecer obtengan un resultado inexacto.</td>
</tr>
<tr>
<td>02</td>
<td>El Excel diseñado puede resultar complejo para el personal que trabajará con este.</td>
</tr>
<tr>
<td>03</td>
<td>Los indicadores definidos para el proceso a implementar, no brindan información relevante para la empresa.</td>
</tr>
<tr>
<td>04</td>
<td>Retraso por parte del grupo de investigación para llevar a cabo las capacitaciones.</td>
</tr>
<tr>
<td>05</td>
<td>Inasistencia por parte del personal de la empresa a las capacitaciones programadas.</td>
</tr>
<tr>
<td>06</td>
<td>Cancelación de la implementación del proceso por parte del dueño de la empresa.</td>
</tr>
<tr>
<td>07</td>
<td>Las actividades programadas demoren más tiempo del planificado.</td>
</tr>
<tr>
<td>08</td>
<td>Retraso de la implementación por parte del grupo de investigación, ya que no disponen de tiempo para ejecutar el plan piloto.</td>
</tr>
<tr>
<td>09</td>
<td>Tras ajustar el modelo del proceso propuesto, este no obtenga los resultados esperados.</td>
</tr>
<tr>
<td>10</td>
<td>Indisposición del personal para brindar información específica para el diseño del proceso, así como para enfocarse en el proceso a implementar.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

3.2.5. Matriz de riesgos

Una vez identificado los riesgos presentes en la fase de ejecución, se desarrollará la matriz de riesgos donde son presentadas las mitigaciones y plan de contingencia para cada riesgo identificado. Asimismo, en esta matriz se determinará el impacto y la probabilidad de ocurrencia de cada uno, así como el producto de estas el cual indicará el nivel del riesgo.
El cálculo de los datos requeridos para diseñar la hoja en Excel resulte erróneo, lo que puede ocasionar que los formatos a establecer obtengan un resultado inexacto.

El Excel diseñado puede resultar complejo para el personal que trabajará con este.

Los indicadores definidos para el proceso a implementar, no brindan información relevante para la empresa.

<table>
<thead>
<tr>
<th>Nro</th>
<th>Descripción de Riesgo</th>
<th>Categoría</th>
<th>Probabilidad</th>
<th>Impacto</th>
<th>Severidad</th>
<th>Responsable</th>
<th>Mitigación</th>
<th>Contingencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>El cálculo de los datos requeridos para diseñar la hoja en Excel resulte erróneo, lo que puede ocasionar que los formatos a establecer obtengan un resultado inexacto.</td>
<td>Informática</td>
<td>0.1</td>
<td>0.4</td>
<td>0.04</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>1. Evaluar los calcuños obtenidos, realizando pruebas en el formato que utilizara estos datos.</td>
<td>1. Realizar de manera continua pruebas a los formatos diseñados, para determinar que los datos requeridos sean los correctos.</td>
</tr>
<tr>
<td>02</td>
<td>El Excel diseñado puede resultar complejo para el personal que trabajará con este.</td>
<td>Informática</td>
<td>0.5</td>
<td>0.8</td>
<td>0.4</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>1. Durante el diseño de los formatos en Excel, consultar con el dueño y personal su apreciación en estos para tomar en cuenta sus observaciones.</td>
<td>1. Consultar al dueño y personal su opinión sobre los formatos, en base a ello ajustar el diseño para que su aplicación se facilite. 2. Crear manuales que sirvan de guía para la utilización de la hoja de cálculo.</td>
</tr>
<tr>
<td>03</td>
<td>Los indicadores definidos para el proceso a implementar, no brindan información relevante para la empresa.</td>
<td>Informática</td>
<td>0.3</td>
<td>0.4</td>
<td>0.12</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>1. Evaluar los posibles indicadores a utilizar, para identificar cuales son los necesarios y de fácil interpretación para el personal de la empresa.</td>
<td>1. Analizar los indicadores para determinar los adecuados para una mype, ya que debe ser especifico y de fácil interpretación para que la empresa lo incorpore y aplique en sus resultados mensuales.</td>
</tr>
<tr>
<td></td>
<td>Retraso por parte del grupo de investigación para llevar a cabo las capacitaciones.</td>
<td>Tiempo</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>1. Preparar el plan de capacitación y elaborar con las presentaciones a realizar lo más pronto posible. 2. Programar las fechas de capacitación e informar a la empresa cuando serán dictadas las capacitaciones.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inasistencia por parte del personal de la empresa a las capacitaciones programadas.</td>
<td>Personal</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>Roberto Angulo</td>
<td>1. Conversar con el dueño de la empresa para que informe al personal la importancia de asistir a las capacitaciones tanto para los citados como el mismo. 2. Fomentar un ambiente de confianza entre los expositores de la capacitación y los participantes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancelación de la implementación del proceso por parte del dueño de la empresa.</td>
<td>Personal</td>
<td>0.5</td>
<td>0.8</td>
<td>0.4</td>
<td>Roberto Angulo</td>
<td>1. Analizar el cumplimiento del diseño del proceso en la fecha propuesta, de lo contrario se deberá reprogramar las fechas de capacitación. 2. Analizar si la implementación se dará en las fechas planificadas, para adelantar en cuanto sea posible la ejecución del plan piloto. 3. Demostrar al dueño, la importancia de poner en marcha la implementación para su empresa.</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Problema descriptivo</td>
<td>Dimensiones del desafío</td>
<td>Responsables</td>
<td>Acción a tomar</td>
<td>Medida de acción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Las actividades programadas demoren más tiempo del planificado.</td>
<td>Tiempo</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>1. Controlar la duración de tiempo estimada para realizar las actividades, para poder cumplir con el tiempo de entrega cada actividad.</td>
<td>1. Dedicar mayor tiempo al cumplimiento de cada actividad, agregar 1 hora más diaria al tiempo dedicado al proyecto.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Retraso de la implementación por parte del grupo de investigación, ya que no disponen de tiempo para ejecutar el plan piloto.</td>
<td>Tiempo</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>1. Organizar el tiempo de cada integrante. 2. Culminar con los deberes pendientes no relacionados al proyecto de tesis.</td>
<td>1. Solicitar permisos para salir temprano de los centros laborales. 2. Solicitar tiempo de vacaciones que coincidan con la fecha programada para la implementación.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Tras ajustar el modelo del proceso propuesto, este no obtenga los resultados esperados.</td>
<td>Tiempo</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>1. Seguir ajustando el modelo en base a los resultados obtenidos tras la implementación.</td>
<td>1. Dedicar mayor tiempo al seguimiento de la implementación, visitar la planta continuamente una vez dada la implementación final.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Indisposición del personal para brindar información específica para el diseño del proceso, así como para enfocarse en el proceso a implementar.</td>
<td>Personal</td>
<td>Roberto Angulo</td>
<td>1. Realizar seguimiento al personal del cual se requiera cierta información mediante visitas personales o llamadas.</td>
<td>1. Conversar personalmente con el personal requerido para determinar si facilitará la información solicitada, de lo contrario se deberá estimar estos datos con base a lo que estime el dueño o lo miembros del grupo de tesis.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: The Project Management Institute 2013
Elaboración propia
En la matriz de riesgos mostrada anteriormente, a cada riesgo fueron asignadas su probabilidad de ocurrencia y el impacto que podría tener este en el desarrollo de la fase de ejecución.

Como resultado, se obtuvo que el principal riesgo presente en esta fase es que el dueño de la empresa cancele la implementación del proceso propuesto, ya que impediría llevar a cabo las actividades de implementación dentro de esta fase, mediante las cuales serán medidas la finalidad del proyecto. De esta manera, es importante avanzar lo más pronto posible las actividades de la fase de ejecución que incluyen el diseño, la capacitación e implementación misma del proceso propuesto, entre otros; también, se debe realizar seguimiento al interés del dueño. Asimismo, los otros riesgos que se encuentran en la zona de riesgo alto son que exista cierto retraso del grupo del proyecto por no contar con tiempo para llevar a cabo el plan piloto. El siguiente riesgo alto es que la hoja Excel diseñada para la empresa resulte ser compleja para el usuario, por lo que, tras las apreciaciones del personal, se ajustaría el formato para mayor comodidad del usuario. El último riesgo alto sería que el personal de la empresa no asista a las capacitaciones, lo que pospondrá la implementación del proceso, ya que, para proceder a implementar, el personal debe llevar una capacitación para introducirlos en el tema y enseñarles a utilizar la hoja de Excel.

Mientras que los riesgos moderados están relacionados a que el grupo de investigación defina indicadores que no otorguen información relevante a la empresa, las capacitaciones a dictar se retrasen a causa del grupo. Asimismo, otro principal riesgo moderado es que las actividades de esta fase tomen más tiempo del programado, por lo que en general la ejecución del proceso se retrasaría. También, que la indisposición del personal para brindar apoyo con cierta información, generaría que el proyecto se retrasase.

Por otro lado, el riesgo bajo es que los cálculos realizados por el grupo del proyecto para diseñar los formatos en Excel no sean exactos, por lo que conforme se realice el avance en el diseño es necesario evaluar los cálculos y hacer pruebas para evitar errores al momento de implementar el proceso en la empresa.
3.2.6. Resumen de recursos

Tras identificar los recursos a utilizar para cada actividad de la fase de ejecución, en la siguiente tabla se muestra el resumen de los recursos utilizados.

Tabla 70: Resumen de recursos en la etapa de ejecución

<table>
<thead>
<tr>
<th>Recurso</th>
<th>Paquete de trabajo involucrado</th>
<th>Aplicación</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop</td>
<td>Todos</td>
<td>MS Microsoft Power Point 2013</td>
<td>Desarrollo de los documentos de tesis, hoja de cálculo, gráficos, tablas, presentaciones en diapositivas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS Microsoft Excel 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS Microsoft Word 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS Visio 2010</td>
<td></td>
</tr>
<tr>
<td>Grupo del proyecto</td>
<td>Todos</td>
<td>Mano de obra</td>
<td>Desarrollo y gestión de todas las actividades del proyecto.</td>
</tr>
<tr>
<td>Personal de la empresa</td>
<td>Plan de recursos productivos, inventarios, capacitación, ejecución, puesta en marcha</td>
<td>Mano de obra</td>
<td>Atención a consultas al grupo del proyecto, también ejecución del proceso propuesto una vez implementado.</td>
</tr>
<tr>
<td>Cuadernillos</td>
<td>Control, evaluación de resultados</td>
<td>Anotaciones</td>
<td>Recopilar apuntes sobre todo lo observado durante las visitas a la empresa, así como la información dada por el personal de la empresa.</td>
</tr>
<tr>
<td>Computadora</td>
<td>Ejecución, evaluación de resultados, puesta en marcha</td>
<td>MS Microsoft Excel 2013</td>
<td>Ejecución de la hoja de cálculo propuesta en la empresa.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

3.2.7. Costos estimados de la ejecución

Dentro de los costos de la fase de ejecución, en la cual será implementado el proceso propuesto, implica principalmente el tiempo por parte del grupo del proyecto; así como el tiempo por parte de la empresa para la capacitación del personal, y las actividades desarrolladas por la implementación. A continuación, se muestran los costos involucrados en toda esta fase.
Tabla 71: Costos estimados de la fase de ejecución

<table>
<thead>
<tr>
<th>Personal</th>
<th>Objetivo</th>
<th>Frecuencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo del proyecto</td>
<td>Gestión y seguimiento de la implementación</td>
<td>Permanente</td>
<td>S/. 7,025</td>
</tr>
<tr>
<td>Personal de la empresa</td>
<td>Implementación del proceso en la empresa</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Materiales</td>
<td>Objetivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuadernillos</td>
<td>Levantamiento de información</td>
<td>Permanente</td>
<td>S/. 12</td>
</tr>
<tr>
<td>Hojas Bond</td>
<td>Formatos / Impresiones / Otros</td>
<td>Permanente</td>
<td>S/. 5</td>
</tr>
<tr>
<td>Transporte</td>
<td>Objetivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporte</td>
<td>Transporte a la empresa / Retorno</td>
<td>16 semanas</td>
<td>S/. 160</td>
</tr>
</tbody>
</table>

TOTAL COSTOS DE LA FASE DE EJECUCIÓN S/. 7,202

Fuente: Elaboración propia

3.3. Capacitación

Para poder llevar a cabo el proceso de acuerdo a lo establecido anteriormente, es necesario que los trabajadores comprendan los objetivos, actividades involucradas, y hasta la nueva herramienta de soporte propuesta; por ello, de acuerdo al cronograma de actividades se ejecutará la capacitación correspondiente de acuerdo al plan de capacitación mostrado a continuación.
PROGRAMA DE CAPACITACIÓN PARA LA FORMACIÓN DEL PERSONAL DE LA EMPRESA FIERROSOL S.A.C.

PRESENTACIÓN

Para la implementación de un proyecto sea de cualquier tipo o magnitud, es necesario brindar capacitación al personal que se verá implicado con el proyecto. Por ello, será desarrollado un programa de capacitación que permita introducir, explicar y enseñar al personal cómo involucrarse con el proceso propuesto. En el presente documento, se presenta el programa propuesto.

CONTENIDO

Necesidades a atender

Perfil de ingreso

Perfil de salida

Descripción del plan de capacitación

NECESIDADES A ATENDER

Con el proceso de PCP se busca atender las necesidades identificadas tras la solicitud de la empresa.

La reducción de ventas perdidas

Planificación de la producción

PERFIL DE ENTRADA

Realizar actividades de corte, doblez, perforado, soldadura, etc.

Contar con experiencia en operaciones manufactureras

Contar con conocimiento de computación básica
PERFIL DE SALIDA

Al finalizar la capacitación el personal de la empresa deberá:

- Comprender el flujo de planificación y programación de producción
- Desarrollar las actividades de planificación y programación de producción
- Ejecutar la hoja de Excel que incluya el proceso
- Evaluar los resultados dados por los indicadores

DESCRIPCIÓN DEL PLAN DE CAPACITACIÓN

El programa de capacitación constará de 2 cursos básicos.

La capacitación será realizada de manera presencial, utilizando materiales de ayuda para la exposición hacia los asistentes.

Evaluación:

- Aspectos a evaluar
- Satisfacción de los asistentes
- Desarrollo de conocimiento
 - Herramientas a utilizar
- Supervisión
- Ronda de consultas y preguntas

Costos y Recursos:
<table>
<thead>
<tr>
<th>Costos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asistente</td>
</tr>
<tr>
<td>Grupo del proyecto</td>
</tr>
<tr>
<td>Personal de la empresa</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recurso</th>
<th>Función</th>
</tr>
</thead>
</table>
| Laptop | MS Microsoft Power Point 2013
| | MS Microsoft Excel 2013 |
| Grupo del proyecto | Expositores |
| Personal de la empresa | Asistentes |

Por otro lado, el programa de capacitación se divide en dos cursos básicos a elección de los responsables del proyecto, como se muestra a continuación:

<table>
<thead>
<tr>
<th>Número</th>
<th>Nombre de capacitación</th>
<th>Duración</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Curso básico de Proceso de planificación, programación y control</td>
<td>04 horas</td>
</tr>
<tr>
<td>2</td>
<td>Curso básico Uso y actualización diaria de hoja de cálculo en Excel</td>
<td>04 horas</td>
</tr>
</tbody>
</table>
Con la implementación del proceso, el trabajo diario se realizará de manera ordenada, ya que a partir de la llegada de un pedido, se planificará a partir de este revisando la disponibilidad de material, hombres y máquinas para programar la fecha en la que se cumplirá este pedido. De esta manera, ya no se genera una venta perdida.

Con estas capacitaciones, el personal asistente aprenderá en qué consiste el proceso de planificación, programación y control de producción, la integración de este con los procesos que posee la empresa actualmente, la información que interactúa entre todos los procesos y por último el nuevo flujo de actividades para la elaboración de los pedidos. De manera que, una vez sea ejecutada la implementación, el personal involucrado podrá intervenir adecuadamente.
CAPACITACIÓN NO. 1

PROCESO DE PLANIFICACIÓN, PROGRAMACIÓN Y CONTROL

PROPÓSITO

Explicar y detallar la importancia del proceso de planificación, programación y control; su impacto en la empresa y el nuevo flujo propuesto con la implementación del proceso.

OBJETIVOS DE APRENDIZAJE

Al término de la capacitación, los trabajadores deberán:

Comprender la importancia del proceso de planificación, programación y control en las actividades diarias del área.

Saber identificar el valor agregado entre el escenario propuesto vs el escenario actual.

Poder emprender la nueva ruta de trabajo de acuerdo al flujo propuesto.

DIRIGIDO A:

Equipo y los interesados en el proyecto

CONTENIDO:

Proceso de planificación, programación y control

Conceptos

Objetivo principal

Esquema general

Escenario propuesto
CAPACITACIÓN NO. 2

USO Y ACTUALIZACIÓN DIARIA DE HOJA DE CÁLCULO EN EXCEL

PROPÓSITO

Explicar y detallar paso a paso el uso de la hoja de cálculo en Excel propuesta que soporta a las actividades del proceso propuesto.

OBJETIVOS DE APRENDIZAJE

Al término de la capacitación, los trabajadores deberán:

Comprender la función y objetivo de cada hoja de cálculo diseñada.

Ingresar, modificar y actualizar datos reales en la hoja de cálculo.

Poder tomar decisiones basado en el análisis de los indicadores.

DIRIGIDO A:

Equipo y los interesados en el proyecto

CONTENIDO:

Hoja de cálculo

Objetivo principal
Es importante mencionar que la tesis en estudio, busca formalizar los métodos de trabajo de una pequeña empresa por medio de la gestión por procesos, y como se definió en las restricciones del proyecto, esta no incurre en gastos adicionales por adquisición de algún bien o servicio, y contratación de personal. De esta manera, la propuesta a implementar tiene como finalidad que la empresa no genere algún costo por adquisición de algún servicio; por lo tanto, no está considerado implementar un sistema ERP.

Por ello, el principal entregable hacia la empresa es el diseño del proceso de planificación, programación y control de producción, acompañado de formatos en Excel que les permita, facilite y complemente las actividades que el proceso requiere y que el colaborador no solía hacer; y de esta manera, llevar un control adecuado del proceso a implementar.

3.4. Herramienta soporte de programación y control

Por otro lado, se diseñó en un libro Excel las hojas de cálculo adecuadas que le den soporte al proceso diseñado en el capítulo 2, pudiendo almacenar data y manejar también calendarios:
La hoja mostrada anteriormente, permite al ejecutor programar la cantidad de materiales requeridos en base a una demanda por tipo de servicio, pedido, y fechas las cuales no se observan porque aún no se lleva a cabo el piloto; sin embargo, a modo de ejemplo se optó por ingresar algunos productos. La programación de los materiales requeridos está asociado a la disponibilidad de inventarios de los mismos, los cuales se observan en la hoja Inventarios. Asimismo, en la hoja se puede reproducir un calendario de entrega de productos programada, las cuales se resaltarán con los colores mostrados en la esquina superior izquierda.
La hoja mostrada anteriormente permite escoger la cantidad de hombres y máquinas requeridos por tipo de pedido, servicio y fecha como en el caso anterior. Si existe duplicidad de recursos, la hoja dará una alerta como se observa en la imagen, con el fin de indicar indisponibilidad de recursos y que se deben reprogramar los mismos. En la tabla siguiente, se ingresan los pedidos programados pendientes de fabricar con el fin de generar una orden de fabricación.
Figura 32: Hoja de Orden de Fabricación

La orden de fabricación mostrada es generada automáticamente con la hoja de Programación B, y debe ser registrada e impresa para poder iniciar la producción del pedido.
La orden de compra se generará siempre y cuando la hoja de Programación A requiera materiales de acuerdo a un volumen de pedido determinado, y no exista disponibilidad de inventarios. Bajo esta premisa, el ejecutor ingresa la cantidad de materiales requeridos para su compra y genera la orden de la misma de acuerdo a las especificaciones propias del formato.
La hoja de inventarios está dada por tipo de espesor de material común que utilizan los productos que fabrica la empresa, y la disponibilidad depende únicamente de las entradas y salidas de los mismos, reflejados en compras y producciones. Con esto se puede hacer una evolución de inventarios, a fin de poder programar compras a proveedores.
El indicador mostrado anteriormente permite observar las veces en la que cada material ha alcanzado el punto de reposición, una vez excedido el inventario mínimo comentado. Asimismo, permite observar la fluctuación de inventarios y poder tomar medidas de acción en base a los indicadores mostrados que determinan el porcentaje disponibilidad alcanzado en el mes. En la imagen se observa que el inventario para el espesor 0.8 se ha mantenido en el mes de Julio ya que no ha habido entradas y salidas.
El indicador de nivel de servicio permite medir la eficiencia de la programación en la fecha de entrega de pedidos programados vs la fecha de entrega real a los clientes. Se generan automáticamente tres gráficos pastel que permiten evaluar al detalle incluso cada tipo de producto. Tras la ejecución de la prueba piloto se observará el nivel de servicio alcanzado.

3.5. Cumplimiento de actividades programadas

De acuerdo a la duración de las actividades programadas de la fase de ejecución del proyecto, al mes de junio se ha culminado la fase de diseño con los entregables mencionados. Se tiene programado en el mes de Julio la corrida de la prueba piloto, para luego evaluar los resultados y dar la puesta en marcha para la implementación. A continuación, se muestra el resumen del cumplimiento de las actividades de la fase, en orden de ejecución:
Comme se observa, para la etapa de diseño se establecieron actividades que permitieron diseñar a través del MS Excel, la herramienta que permitirá en adelante programar y controlar en tiempo real la producción en el área de manufactura. Las actividades no presentaron retrasos y se dieron con normalidad durante las semanas indicadas anteriormente en el cronograma como se observa en las franjas delgadas de color celeste en cada entregable de la etapa. El cierre de la etapa se dio el 19 de junio.
Para la etapa piloto la cual se estableció a partir de la primera semana de Julio, se llevó cabo durante la segunda semana de acuerdo a lo conversado con el dueño de la empresa. Cabe resaltar que en la etapa piloto se estimó una duración de aproximadamente 1 mes y medio, siendo la duración real similar a esta. En esta etapa se obtuvieron los primeros resultados que permitieron elaborar los indicadores y establecer dos principales objetivos que serán medidos a partir de la ejecución formal del proyecto.

Figura 39: Cumplimiento de actividades – Etapa de Implementación

Finalmente, de acuerdo a lo mencionado anteriormente, la etapa de implementación se llevó a cabo una vez evaluado los resultados en la etapa piloto; por lo cual, la implementación se dio a fines del mes de agosto y se hace un continuo seguimiento en la ejecución de tareas y análisis de resultados para la consecución de objetivos. Cabe resaltar que el cierre formal del proyecto se dará una semana después de la entrega del presente documento; es decir, el cierre estimado será el sábado 03 de diciembre del 2016.

En el presente capítulo, se llevó a cabo el diseño del proceso de planificación, programación y control, iniciando con la inclusión de este al mapa de procesos actual de la empresa, la interacción del proceso mencionado con los demás procesos con los que trabaja, y la realización del entregable del proceso que son formatos utilizando la herramienta de Excel. Seguidamente, se desarrolló el plan para llevar a cabo la ejecución del proceso propuesto por lo que se analizó y describió a detalle cada actividad involucrada en esta etapa; también, fueron desarrolladas fichas de resumen de cada actividad presentadas como anexos. Asimismo, se realizó un cronograma
que incluyen las actividades de la fase de ejecución para a partir de este evaluar el cumplimiento de las fechas estimadas. Se identificaron los riesgos que pueden afectar la implementación en general del proceso, así como también se establecieron las acciones mitigadores y plan de contingencia para cada uno en una matriz de riesgos, y se detallaron los recursos y costos estimados durante la etapa de ejecución del proceso. Por otra parte, se detalló el programa de capacitación a realizar para efectuar las capacitaciones programadas para implementar el proceso. Finalmente, se mostraron y explicaron los formatos diseñados del proceso propuesto; además, fue mostrado el avance del cumplimiento de las actividades realizadas correspondientes a la fase de ejecución.
CAPÍTULO 4 : RESULTADOS Y VALIDACIÓN

En el presente capítulo, se presentará la descripción del desarrollo de la implementación del proceso en Fierrosol S.A.C. por lo que se explicará a detalle cómo se desarrolló cada actividad de la fase de ejecución del proyecto y las acciones realizadas ante situaciones no planificadas en las actividades programadas. También, se establecerá el tiempo y costo real para las actividades que serán comparados con lo estimado en los capítulos anteriores. Asimismo, se evaluarán los peligros identificados en el capítulo anterior para analizar cuáles afectaron la etapa de implementación. Por otro lado, serán evaluados los impactos del proyecto dentro de la empresa; para ello se elaboraron indicadores económicos mediante los cuales se determina el impacto del proceso propuesto en las ventas perdidas. Finalmente, se presentarán los formatos utilizados para realizar el seguimiento a la etapa de implementación del proceso en la empresa.
4.1. Desarrollo de la implementación del proyecto

4.1.1. Actividades realizadas

Actividad N° 01: Capacitar al personal sobre el flujo del proceso

Inicialmente, se tenía planificado realizar la capacitación al finalizar la jornada laboral y haciendo una exposición proyectada a todo el personal convocado. Sin embargo, no se contaba con un proyector a través del cual se visualice la presentación, y mostrar las diapositivas a través del monitor de la computadora no iba a ser cómodo para los asistentes. Por lo tanto, la capacitación fue realizada de la siguiente manera.

En lugar de realizarla al término de la jornada laboral, se imprimió las diapositivas y una hora y media previa al finalizar la jornada, 16:30 p.m., nos acercamos presencialmente a cada persona para mostrarle el contenido informativo, explicar este y responder las dudas que puedan surgir. Esto se realizó de la misma manera al siguiente día.

<table>
<thead>
<tr>
<th>Actividad N° 01</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo</td>
<td>4 horas</td>
<td>4.25 horas</td>
</tr>
<tr>
<td>Recursos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Laptop</td>
<td></td>
<td>1 Computadora</td>
</tr>
<tr>
<td>2 Expositores</td>
<td></td>
<td>2 Expositores</td>
</tr>
<tr>
<td>1 Proyector</td>
<td></td>
<td>5 Juegos de copias impresas</td>
</tr>
<tr>
<td>5 Trabajadores</td>
<td></td>
<td>5 Trabajadores</td>
</tr>
<tr>
<td>Costos</td>
<td>S/. 302.8</td>
<td>S/. 211.8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Tabla 73: Duración de la actividad N° 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
</tr>
<tr>
<td>Capacitar al personal sobre el flujo de proceso</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Real</td>
</tr>
<tr>
<td>Duración (días)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Actividad N° 02: Capacitar al personal sobre el manejo del Excel de Operaciones

Al igual que la primera capacitación, esta estaba planeada ser realizada al finalizar la jornada laboral y haciendo una exposición proyectada a todo el personal convocado. Sin embargo, el no contar con un proyector a través del cual se visualice la presentación, trajo consigo ciertas modificaciones en la manera en que se tornó la capacitación. La capacitación fue realizada una hora previa a finalizar la jornada, se tuvo que imprimir las diapositivas y explicarle personalmente a cada capacitado el contenido de la información. Para el caso del personal que utilizaría los formatos en Excel, la capacitación fue realizada junto a la computadora, pues no todos los capacitados iban a encargarse de los formatos en Excel; sin embargo, fue necesario que todos tengan conocimiento al respecto para alimentar la comprensión del proceso propuesto. Esto se realizó de la misma manera al siguiente día.

<table>
<thead>
<tr>
<th>Tabla 74: Recursos consumidos actividad N° 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad N° 02</td>
</tr>
<tr>
<td>Tiempo</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1 Laptop</td>
</tr>
<tr>
<td>2 Expositores</td>
</tr>
<tr>
<td>1 Proyector</td>
</tr>
<tr>
<td>5 Trabajadores</td>
</tr>
<tr>
<td>Costos</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Tabla 75: Duración de la actividad N° 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
</tr>
<tr>
<td>Capacitar al personal sobre el manejo del Excel de Operaciones</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Real</td>
</tr>
<tr>
<td>Duración (días)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Actividad N° 03: Ejecutar proceso propuesto

Tras cumplir con la capacitación al personal, se procedió con la ejecución del modelo propuesto. Previamente, se tuvo que codificar las máquinas con las que cuenta la empresa, ya que uno de los formatos a implementar asigna la máquina a trabajar cada orden, pero como existen algunas máquinas que son del mismo modelo no se podría dar una asignación correctamente. Por ello, para identificar el puesto de trabajo, se tuvo que crear un tipo de código para cada máquina el cual coincida con el formato que corresponde a la programación. Para que la identificación de cada puesto de trabajo sea más sencilla para el personal de operaciones, se imprimió el código en una hoja y este fue pegado en la parte delantera de cada máquina con el fin de que sea visible y la localización se dé rápidamente.

Continuando con la ejecución, esta iniciaría como la prueba piloto programada inicialmente en el plan del proyecto. El archivo en Excel fue grabado en una carpeta compartida que maneja la empresa para que el personal involucrado asigne y coloche los datos que les corresponde. De manera que se dio inicio a esta prueba por lo que el grupo del proyecto estuvo guiando inicialmente a la encargada de logística, pues el proceso comienza cuando esta ingresa los datos del pedido, guarda el archivo y comunica al responsable de PCP. Continuando con el proceso, como grupo del proyecto nos dirigimos al costado del responsable para guiarlo e instruirlo en la aplicación de los formatos y la programación del pedido; una vez realizada esta se imprime el formato de orden de producción completo y es entregado al personal asignado a la elaboración del pedido. Uno de los integrantes del grupo del proyecto se dirigió a revisar que el personal no pierda la orden y pueda completar con el dato de la fecha de término que sirve para poder llevar el control de la producción y asimismo, permite elaborar automáticamente los indicadores creados por el equipo del proyecto. A su vez, el otro integrante se mantenía alerta en la guía del personal cuando llegaba otro pedido. Finalmente, al terminar el pedido y enviarlo al almacén, el personal que elaboró el pedido completa el dato requerido en la orden de producción y esta es devuelta al responsable de PCP para que actualice el indicador. Todo este seguimiento fue realizado durante el tiempo de duración de esta actividad.

Paralelamente a la programación de la elaboración de los pedidos, la empresa empezó a utilizar los formatos para llevar el control de los inventarios de las planchas de manera que pueda
determinar las fechas en las que debe solicitar abastecimiento a su proveedor, por lo que el grupo del proyecto estuvo supervisando la aplicación de este formato como parte del proceso propuesto.

Tabla 76: Recursos consumidos actividad Nº 03

<table>
<thead>
<tr>
<th>Actividad Nº 03</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos</td>
<td>1 Laptop</td>
<td>2 Computadoras</td>
</tr>
<tr>
<td></td>
<td>2 Responsables del proyecto</td>
<td>2 Responsables del proyecto</td>
</tr>
<tr>
<td></td>
<td>4 Trabajadores</td>
<td>4 Trabajadores</td>
</tr>
<tr>
<td>Costos</td>
<td>S/. 2,662.5</td>
<td>S/. 3,019.3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 77: Duración de la actividad Nº 03

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Estimado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duración (días)</td>
</tr>
<tr>
<td>Ejecutar proceso propuesto</td>
<td>33</td>
</tr>
</tbody>
</table>

	Real		
	Duración (días)	Fecha de Inicio	Fecha de Fin
	35	16/07/2016	20/08/2016

Fuente: Elaboración propia

Actividad Nº 04: Realizar control y seguimiento al proceso propuesto

Esta actividad involucró netamente al grupo del proyecto, ya que la supervisión de la ejecución del proceso de PCP dentro de la empresa estaba a cargo de este, por lo que cualquier inconveniente presentado en todo el desarrollo del proceso fue atendido por cada integrante del grupo. Asimismo, se tomaban anotaciones para identificar qué puntos se pueden mejorar como fue se daban algunos casos que atención al cliente recibía los pedidos, los ingresaba a la data; pero no cerraba el archivo lo que impedía la continuidad del proceso. Por ello, se implementó un pequeño afiche pegado a la pared que recordaba cerrar el archivo luego de guardar. De la misma manera se implementó el mismo junto al responsable de PCP que en ocasiones pasaba por la misma situación.
Tabla 78: Recursos consumidos de la actividad N° 04

<table>
<thead>
<tr>
<th>Actividad N° 04</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos</td>
<td>2 Cuadernillos 2 Responsables del Proyecto</td>
<td>2 Cuadernillos 2 Responsables del Proyecto</td>
</tr>
<tr>
<td>Costos</td>
<td>S/. 373.5</td>
<td>S/. 433.6</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 79: Duración de la actividad N° 04

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realizar control y seguimiento al proceso propuesto</td>
<td>Duración (días) Fecha de Inicio Fecha de Fin</td>
<td>Duración (días) Fecha de Inicio Fecha de Fin</td>
</tr>
<tr>
<td></td>
<td>33 18/07/2016 20/08/2016</td>
<td>33 18/07/2016 20/08/2016</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Actividad N° 05: Realizar control y seguimiento al personal

Paralelamente al desarrollo del piloto del proceso, el grupo del proyecto estuvo realizando seguimiento al personal de la empresa para evaluar el impacto de la implementación en este. Lo primero que se realizó fue una encuesta al personal capacitado para medir el nivel de aprendizaje alcanzado, a cada persona que asistió a la capacitación les fue formulada una encuesta sencilla para marcar evaluando algunos aspectos de la capacitación, con la finalidad de encontrar los puntos débiles que se deben mejorar en la curva de aprendizaje. Por otra parte, se identificó que el personal que manejaba la hoja de cálculo en ocasiones se detenía durante un buen tiempo a arreglar cierta información que se desconfiguraba del archivo, por lo que se les apoyaba en los inconvenientes ocurridos.

Tabla 80: Recursos consumidos de la actividad N° 05

<table>
<thead>
<tr>
<th>Actividad N° 05</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurso</td>
<td>2 Cuadernillos 2 Responsables del Proyecto</td>
<td>2 Cuadernillos 2 Responsables del Proyecto</td>
</tr>
<tr>
<td>Costos</td>
<td>S/. 373.52</td>
<td>S/. 346.8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 81: Duración de la actividad N° 05

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Estimado</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Realizar control y seguimiento al personal</td>
<td>Duración (días)</td>
<td>Fecha de Inicio</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>18/07/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20/08/2016</td>
</tr>
<tr>
<td>Real</td>
<td>Duración (días)</td>
<td>Fecha de Inicio</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>18/07/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20/08/2016</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Actividad N° 06: Medir resultados a través de indicadores

Una vez culminado el mes de Julio, y como el piloto fue realizado a partir de mediados de ese mes. Se calcularon los indicadores con los datos completados durante ese período, para ello el grupo del proyecto se reunió con el dueño y el responsable del proceso para conversar acerca de los resultados. Luego de ello, el grupo del proyecto solicitó una copia del archivo del Excel de Operaciones del mes de Julio para mostrar los resultados como parte de la validación. De la misma manera, se realizó el análisis de los indicadores contenidos en el Excel de Operaciones para el mes de Agosto que es cuando finaliza la prueba piloto, y a finales de ese mes se puso en marcha la implementación para continuar analizando los resultados obtenidos durante los próximos meses.

Tabla 82: Recursos consumidos de la actividad N° 06

<table>
<thead>
<tr>
<th>Actividad N° 06</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos</td>
<td>1 Computadora</td>
<td>1 Computadora</td>
</tr>
<tr>
<td></td>
<td>1 Trabajador</td>
<td>1 Trabajador</td>
</tr>
<tr>
<td></td>
<td>2 Responsables del proyecto</td>
<td>2 Responsables del proyecto</td>
</tr>
<tr>
<td>Costos</td>
<td>S/. 200.10</td>
<td>S/. 100.1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 83: Duración de la actividad N° 06

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Estimado</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medir los resultados a través de los indicadores</td>
<td>Duración (días)</td>
<td>Fecha de Inicio</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20/08/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25/08/2016</td>
</tr>
<tr>
<td>Real</td>
<td>Duración (días)</td>
<td>Fecha de Inicio</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21/08/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24/08/2016</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Actividad N° 07: Establecer acciones de mejora

Cuando fue culminada la etapa del piloto, el grupo del proyecto analizó los resultados obtenidos en este. Afortunadamente, no se identificaron puntos débiles en cuanto al modelo propuesto de programación para el área de operaciones, así como tampoco en la herramienta de Excel creada por el equipo del proyecto para el soporte de este. Las únicas modificaciones dadas a las plantillas en Excel fueron que había que proteger las celdas, pues los que manejaban estas en ocasiones modificaban o borran las formulas establecidas en las celdas.

Por el contrario, un aspecto por mejorar fue la capacitación al personal sobre el flujo del proceso del modelo, puesto que con los resultados de la encuesta de evaluación de la capacitación se pudo identificar que gran parte del personal capacitado no obtuvo el nivel de aprendizaje esperado con las instrucciones dadas. Por lo tanto, hubo que volver a capacitar al personal sobre el flujo del proceso, para ello se realizaron las siguientes actividades:

Tabla 84: Actividades dadas para mejorar la capacitación

<table>
<thead>
<tr>
<th>No.</th>
<th>Actividad</th>
<th>Fecha</th>
<th>Participantes</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preguntar a cada persona capacitada las razones por las que las instrucciones dadas no ayudaron a comprender completamente el proceso</td>
<td>03/08/2016</td>
<td>Cristian Andrade, Wilfredo Salinas, Roberto Angulo, Maximiliana Guzmán, Guillermo Zúñiga, Alfonso Pizarro</td>
<td>Hablar directamente con el personal capacitado permitirá identificar que punto se debe mejorar</td>
</tr>
<tr>
<td>2</td>
<td>Modificar la manera de explicación para dar el instructivo</td>
<td>06/08/2016</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>Para dar las instrucciones del proceso se debe utilizar términos y adjetivos simples</td>
</tr>
<tr>
<td>3</td>
<td>Elaborar instructivos para el personal que manejará el archivo de Excel</td>
<td>10/08/2016</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>Un breve manual en Word con imágenes e indicaciones</td>
</tr>
<tr>
<td>4</td>
<td>Preparar una breve charla con cada trabajador capacitado</td>
<td>20/08/2016</td>
<td>Cristian Andrade, Wilfredo Salinas</td>
<td>Tener un discurso elaborado donde se preparen las palabras a decir</td>
</tr>
<tr>
<td>5</td>
<td>Dictar la breve charla al personal capacitado</td>
<td>24/08/2016</td>
<td>Cristian Andrade, Wilfredo Salinas, Roberto Angulo, Maximiliana Guzmán, Guillermo Zúñiga, Alfonso Pizarro</td>
<td>Conversación personalmente con cada persona</td>
</tr>
<tr>
<td>6</td>
<td>Atender las preguntas que surjan tras la charla</td>
<td>24/08/2016</td>
<td>Cristian Andrade, Wilfredo Salinas, Roberto Angulo, Maximiliana Guzmán, Guillermo Zúñiga, Alfonso Pizarro</td>
<td>Responder preguntas y en caso no hayan generarlas para despejar posibles dudas</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 85: Recursos consumidos de la actividad N° 07

<table>
<thead>
<tr>
<th>Actividad N° 07</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos</td>
<td>1 Laptop</td>
<td>1 Laptop</td>
</tr>
<tr>
<td></td>
<td>2 Responsables del proyecto</td>
<td>2 Responsables del proyecto</td>
</tr>
<tr>
<td>Costos</td>
<td>S/. 106.7</td>
<td>S/. 485.3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 86: Duración de la actividad N° 07

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Estimado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duración (días)</td>
</tr>
<tr>
<td>Establecer acciones de mejora</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duración (días)</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Actividad N° 08: Ejecutar el modelo ajustado

El modelo del proceso diseñado e implementado en la prueba piloto no requirió un cambio significativo. Las mejoras aplicadas a la herramienta de Excel pudieron darse al instante en el que surgió el inconveniente como fue el caso de proteger las hojas de los formatos. Por otro lado, hubo que volver a dar la capacitación al personal en cuanto al flujo del proceso, pues con los resultados de la encuestas se obtuvo que se debía realizar un refuerzo en este tema para mejorar la curva de aprendizaje. Finalmente, se puso en marcha la implementación del proceso en la empresa, la cual estará a cargo en su mayoría por esta, ya que la prueba piloto sirvió de entrenamiento. Sin embargo, el grupo del proyecto continúa haciendo seguimiento a la implementación, realizando visitas periódicamente para llevar un control. Tras el cierre formal del proyecto ejecutado, el seguimiento estará bajo responsabilidad de la empresa, de acuerdo a como se ha ido trabajando hasta el momento.

Tabla 87: Recursos consumidos de la actividad N° 08

<table>
<thead>
<tr>
<th>Actividad N° 08</th>
<th>Estimado</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos</td>
<td>1 Computadora</td>
<td>1 Computadora</td>
</tr>
<tr>
<td></td>
<td>1 Trabajador</td>
<td>1 Trabajador</td>
</tr>
<tr>
<td>Costos</td>
<td>S/. 747.04</td>
<td>S/. 1,064.7</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 88: Duración de la actividad N° 08

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Estimado</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duración (días)</td>
<td>Fecha de Inicio</td>
<td>Fecha de Fin</td>
</tr>
<tr>
<td>Ejecutar el modelo ajustado</td>
<td>96</td>
<td>29/08/2016</td>
<td>03/12/2016</td>
</tr>
<tr>
<td></td>
<td>Real</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duración (días)</td>
<td>Fecha de Inicio</td>
<td>Fecha de Fin</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>27/08/2016</td>
<td>03/12/2016</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

4.1.2. Riesgos ocurridos en la Fase de Implementación

Durante la etapa de implementación, estuvieron presentes 2 riesgos identificados en el capítulo 3. En primer lugar, el retraso de la implementación por parte del grupo del proyecto por no disponer de tiempo para iniciar la prueba piloto, se dio porque ambos integrantes del grupo trabajan en empresas muy lejanas a Fierrosol S.A.C., por lo que la distancia era uno de los factores críticos que en ocasiones impedía llegar a una hora prudente para la puesta en marcha y seguimiento del piloto. Por ello, se tuvo que modificar las fechas estimadas para las actividades del piloto y las relacionadas a este.

En segundo lugar, la indisposición del personal para brindar información para poder diseñar el proceso, así como el interés en este; como en la mayoría de empresas, una parte del personal en ocasiones se torna reacio a algunos cambios. Sin embargo, la reacción del personal al estar ocupado con sus labores tras solicitar cierta información y obtener respuestas desinteresadas, sucedió muy pocas veces, principalmente en un inicio; y esto se debió a que el gerente general puso mucho interés en el proyecto y brindó la confianza necesaria a sus trabajadores que el equipo ejecutor del proyecto esperaba.

A continuación, se mostrará el resumen de cada riesgo que tuvo cierto impacto en el desarrollo de la implementación del proyecto, así como el detalle de la fecha de ocurrencia, la mitigación y contingencia tomados para el riesgo.
Tabla 89: Resumen del primer riesgo ocurrido

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Indisposición del personal para brindar información específica para el diseño del proceso, así como para enfocarse en el proceso a implementar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha</td>
<td>03/06/2016</td>
</tr>
<tr>
<td>Responsable</td>
<td>Grupo del proyecto: Cristian Andrade, Wilfredo Salinas, Roberto Angulo</td>
</tr>
<tr>
<td>Mitigación</td>
<td>Se conversó con el dueño de la empresa, ya que al requerir cierta información al personal no se obtuvo una respuesta, por lo que era necesario que el dueño hable con su personal para que otorguen disposición al grupo.</td>
</tr>
<tr>
<td>Contingencia</td>
<td>El grupo del proyecto entabló mayor comunicación con el personal de la empresa, para que no tomen la implementación del proceso como algo que pueda afectar su trabajo; por el contrario, para que comprendan que es una mejora para toda la empresa.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 90: Resumen del segundo riesgo ocurrido

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Retraso de la implementación por parte del grupo del proyecto, ya que no disponen de tiempo para ejecutar el plan piloto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha</td>
<td>04/07/2016 – 08/07/2016</td>
</tr>
<tr>
<td>Responsable</td>
<td>Grupo del proyecto: Cristian Andrade, Wilfredo Salinas</td>
</tr>
<tr>
<td>Mitigación</td>
<td>Cada integrante del grupo organizó su tiempo para que coincidan los días y horas que estarán desocupados para dirigirse a la empresa.</td>
</tr>
<tr>
<td>Contingencia</td>
<td>Cada integrante del grupo conversó con sus jefes en la empresa, para que les den facilidades de salir temprano y ausentarse una vez por semana, comprometiéndose a recuperar su tiempo de trabajo a partir del mes de agosto.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

4.1.3. Costos reales de la ejecución

Tras la implementación del proceso, se obtuvieron los costos reales de las actividades y estos serán comparados con los estimados en el capítulo 3. A continuación, se muestran los costos involucrados en la implementación.
Tabla 91: Costos de la implementación

<table>
<thead>
<tr>
<th>Personal</th>
<th>Objetivo</th>
<th>Frecuencia</th>
<th>Estimado Total</th>
<th>Real Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo del proyecto</td>
<td>Gestión, implementación y seguimiento del proyecto</td>
<td>Permanente</td>
<td>S/. 7,025</td>
<td>S/. 6,519</td>
</tr>
<tr>
<td>Personal de la empresa</td>
<td>Implementación del proceso en la empresa</td>
<td>Permanente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuadernillos</td>
<td>Levantamiento de información</td>
<td>Permanente</td>
<td>S/. 12</td>
<td>S/. 12</td>
</tr>
<tr>
<td>Hojas Bond</td>
<td>Formatos / Impresiones / Otros</td>
<td>Permanente</td>
<td>S/. 5</td>
<td>S/. 10</td>
</tr>
<tr>
<td>Transporte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporte</td>
<td>Transporte a la empresa / Retorno</td>
<td>Permanente</td>
<td>S/. 160</td>
<td>S/. 630</td>
</tr>
<tr>
<td>TOTAL COSTOS DE LA FASE DE EJECUCIÓN</td>
<td></td>
<td></td>
<td>S/. 7,202</td>
<td>S/. 7,171</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Los datos mostrados representan los costos referentes a la fase de ejecución, cuyo costo real totaliza S/. 7,171 soles.

Este monto representa el costo de las actividades involucradas en la ejecución del proyecto desde el diseño de la herramienta en Excel, la prueba piloto para evaluar el proceso y una vez culminada esta; finalmente poner en marcha el sistema.

4.1.4. Costos del proyecto

El presupuesto para el proyecto de tesis mostrado en el capítulo 2 es de S/. 11,014 soles. A continuación, se presentarán los costos reales de las actividades del proyecto realizadas así como los gastos incurridos por parte del grupo del proyecto de tesis en materiales y transporte para visitar la empresa.

El costo del proyecto es de S/. 9,993 soles, el cual involucra el tiempo utilizado por parte de los gestores del proyecto en todas las actividades de este, así como el del personal de la empresa en las cuales era requerida su intervención, cuadernillos e impresiones utilizadas y el transporte de los gestores.
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Costo Real</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra de cuadernillos para el grupo del proyecto de tesis</td>
<td>S/. 12.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Realizar impresiones</td>
<td>S/. 15.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Transporte a la empresa hasta la fecha</td>
<td>S/. 800.0</td>
<td>Cumplido</td>
</tr>
</tbody>
</table>

Tabla 92: Costos reales del proyecto por actividad

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Costo Real</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definir enunciado del proyecto</td>
<td>S/. 6.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Definir caso de negocio</td>
<td>S/. 4.4</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Definir factores ambientales de la empresa</td>
<td>S/. 10.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Definir activos de los procesos de la organización</td>
<td>S/. 8.9</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar acta constitucional del proyecto</td>
<td>S/. 40.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Identificar interesados</td>
<td>S/. 6.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar registro de interesados</td>
<td>S/. 13.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Identificar impacto de cada interesado</td>
<td>S/. 13.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer estrategia de gestión de los interesados</td>
<td>S/. 33.4</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar encuestas</td>
<td>S/. 18.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Encuestar a los interesados</td>
<td>S/. 20.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Recopilar requisitos de los interesados</td>
<td>S/. 20.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Documentar requisitos</td>
<td>S/. 26.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar matriz de trazabilidad</td>
<td>S/. 13.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Definir objetivos</td>
<td>S/. 60.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Definir el alcance</td>
<td>S/. 26.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Definir restricciones</td>
<td>S/. 13.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar registro de alcance</td>
<td>S/. 10.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Definir actividades</td>
<td>S/. 106.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Secuenciar actividades</td>
<td>S/. 13.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Estimar recursos para las actividades</td>
<td>S/. 26.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Estimar duración de las actividades</td>
<td>S/. 40.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar cronograma de hitos</td>
<td>S/. 13.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar organigrama jerárquico</td>
<td>S/. 10.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Equipo del proyecto</td>
<td>S/. 30.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar diagrama matricial</td>
<td>S/. 33.4</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Identificar riesgos</td>
<td>S/. 13.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar matriz de riesgos</td>
<td>S/. 33.4</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar matriz de probabilidad e impacto</td>
<td>S/. 20.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar presupuesto</td>
<td>S/. 53.4</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Elaborar plan de comunicaciones</td>
<td>S/. 20.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer cantidad de hombres requeridos</td>
<td>S/. 55.4</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer cantidad de máquinas requeridas</td>
<td>S/. 39.6</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer inventario inicial</td>
<td>S/. 63.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer inventario mínimo para reposición</td>
<td>S/. 81.1</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer parámetros para hoja de requerimientos de producción</td>
<td>S/. 43.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer indicadores de producción</td>
<td>S/. 83.8</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Plan de recursos productivos</td>
<td>S/. 40.0</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Inventarios</td>
<td>S/. 46.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Hoja de requerimientos</td>
<td>S/. 100.1</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Indicadores</td>
<td>S/. 93.4</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Capacitar al personal sobre el flujo del proceso</td>
<td>S/. 211.8</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Capacitar al personal sobre el manejo del Excel de Operaciones</td>
<td>S/. 211.8</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Ejecutar proceso propuesto</td>
<td>S/. 3,019.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Realizar control y seguimiento al proceso propuesto</td>
<td>S/. 433.6</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Realizar control y seguimiento al personal</td>
<td>S/. 346.8</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Medir resultados a través de los indicadores</td>
<td>S/. 100.1</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Establecer acciones de mejora</td>
<td>S/. 485.3</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Ejecutar el modelo ajustado</td>
<td>S/. 1,064.7</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Evaluar cumplimiento de requisitos</td>
<td>S/. 354.5</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Evaluar impactos</td>
<td>S/. 453.6</td>
<td>Cumplido</td>
</tr>
<tr>
<td>Desarrollar el documento de cierre</td>
<td>S/. 1,080.5</td>
<td>Cumplido</td>
</tr>
</tbody>
</table>

Total

S/. 9,993.3

Fuente: Elaboración propia
4.2. Validación

4.2.1. Impactos

Tras la corrida de la prueba piloto siguiendo el modelo propuesto y utilizando la herramienta de soporte para la programación y control creado, se obtuvieron los primeros resultados que serán mostrados y analizados a lo largo de esta segunda parte del capítulo.

En primer lugar, fue pertinente conocer la evolución de la demanda durante el primer semestre del año respecto al año anterior con el fin de poder observar algún comportamiento atípico que pueda posiblemente repetirse durante el segundo semestre de este año, en donde se da la implementación de acuerdo al cronograma presentado anteriormente. La evolución de la demanda se muestra a continuación:

Figura 40: Evolución de la Demanda 2015 vs 2016

Como se observa, las ventas durante el primer semestre de este año respecto al año 2015 conservan una tendencia lineal como muestran las líneas punteadas. En el caso de este año, a pesar que las ventas acumuladas han sido menores respecto al año anterior durante el primer semestre, se presenta una tendencia lineal creciente que en el segundo trimestre ha superado las ventas del año 2015. Asimismo, se observa que los puntos de inflexión se repiten en los meses de marzo, Abril y Junio; lo que nos permite corroborar que no se ha dado ningún comportamiento atípico durante este periodo incluso durante el mes de Marzo que es el mes de mayor demanda histórica del año, de acuerdo a lo indicado por el gerente general. Por ello, los resultados de la
prueba piloto y la proyección que se hará durante el segundo semestre para la familia de planchas, no incluyen eventos atípicos según lo acordado entre el equipo del proyecto y la empresa.

4.2.1.1. Prueba Piloto

Tras la corrida de la prueba piloto se obtuvieron resultados importantes que serán mostrados a continuación:

Figura 41: Costo de Oportunidad – Prueba Piloto

Como se observa, durante el piloto dado en el mes de Julio se obtuvo un total de S/.1,437 soles perdidos bajo el modelo propuesto por el equipo del proyecto. Sin embargo, este monto respecto a Julio del 2015 significa un ahorro de S/.1,020 soles o lo que equivale decir un ahorro del 41.5% aproximadamente.

Por ello, el equipo del proyecto decidió analizar la causa del costo de oportunidad mencionado dado durante la corrida de la prueba piloto. Así, se encontró que el costo de oportunidad se debió únicamente a la falta de reposición de inventarios para ciertos tipos de planchas, incluso cuando el programador asignado de la producción generó las órdenes de compra desde la planta que propone nuestro modelo, de acuerdo a lo mencionado por la persona encargada del área logística.
Figura 42: Pedidos cancelados – Prueba Piloto

<table>
<thead>
<tr>
<th>Pedido</th>
<th>Fecha Solicitud</th>
<th>Cliente</th>
<th>Producto</th>
<th>Detalle</th>
<th>Volumen</th>
<th>Servicio</th>
<th>Estado</th>
<th>Entrega Programada</th>
<th>Entrega Real</th>
</tr>
</thead>
</table>

Fuente: Fierrosol S.A.C.

Este evento ocurrido generó la caída del nivel de inventarios para los tipos de planchas mencionados en la figura anterior, el impacto se dio en las ventas a los clientes con los que la empresa se comprometió y asimismo, con el programador de la producción y el maestro de operaciones que tuvieron que reasignar los tiempos y recursos previamente acordados.

El flujo del nivel de inventarios para los tipos de plancha desabastecidos se muestra a continuación:

Figura 43: Nivel crítico de inventarios – Prueba Piloto

De esta manera, se observa que existen factores externos que impactan en la empresa económicamente y que inicialmente el efecto se da en cadena, en este caso logística generó un
impacto negativo en el área de operaciones y ello implicó que el modelo propuesto para la planificación, programación y control no tenga un resultado favorable.

Por otro lado, tras la culminación de la prueba piloto, el grupo del proyecto elaboró un gráfico que permite analizar el nivel de entendimiento y satisfacción del modelo propuesto enseñado durante el periodo de capacitación:

Figura 44: Resultados de la capacitación – Prueba Piloto

Como se observa, el aspecto crítico y de mayor consideración para el equipo humano fue lograr comprender e interiorizar mejor el modelo propuesto, ya que hubo inicialmente una resistencia al cambio por parte de los trabajadores. Por ello, el grupo del proyecto tuvo que hacer un especial seguimiento a los trabajadores durante las primeras semanas de la prueba piloto para que la implementación se diera sin mayores inconvenientes.
4.2.2. Objetivos

Luego de haber presentado y analizado los resultados del piloto, se trazaron objetivos con el gerente general para la implementación del modelo antes de ser iniciado. Estos objetivos pretenden ser alcanzados antes del final del segundo semestre del presente año, y se acordó el seguimiento del modelo y la actualización de los indicadores mensualmente durante este periodo. Los objetivos fijados se muestran a continuación:

Figura 45: Nivel de Servicio – Prueba Piloto

Se definió como nivel de servicio a aquel porcentaje de pedidos entregados en la fecha que fueron comprometidos con el cliente, es decir, pedidos sin retrasos o lo que es lo mismo decir, una programación de la producción eficaz. De esta manera, durante la prueba piloto se obtuvo un nivel de servicio del 68%, y se ha puesto como objetivo hasta un 80% desde la puesta en marcha de la implementación del modelo, mediante una buena administración de los recursos, tiempo y materiales disponibles en donde se convierten en pieza fundamental el programador de la producción en coordinación con el maestro de operaciones.

El segundo objetivo se convierte en un objetivo económico que implica reducir el costo de oportunidad del segundo semestre respecto al año 2015. Recordemos que el año anterior se recabó una suma acumulada anual de aproximadamente S/. 30,000 soles perdidos solo en la familia de planchas, de los cuales el segundo semestre sumó S/. 14,736 soles.
Este año y durante el segundo semestre, periodo del arranque del piloto e implementación, se ha fijado como objetivo un 75% de ahorro respecto al segundo semestre del año anterior; lo que significa una pérdida de S/. 3,684 soles o lo que es lo mismo decir, un ahorro de S/. 11,052 soles en la familia de planchas. Para ello, es necesario tener un costo de oportunidad promedio mensual de a lo más S/.450 soles para alcanzar dicho objetivo.

Por ello, se elaboró un indicador que estima los costos de oportunidad esperados considerando el promedio mensual mencionado para facilitar el seguimiento y logro del objetivo:

Figura 46: Proyección del costo de oportunidad – Segundo Semestre

El gráfico nos muestra la proyección del costo de oportunidad esperado para el segundo semestre representado por las líneas punteadas; estas fluctúan alrededor del promedio indicado y siguen un comportamiento similar al semestre anterior. De cumplirse la proyección, esto permitiría alcanzar el 75% de ahorro fijado para la familia de planchas.
Actualización – Mes de Agosto

Como se indicó anteriormente, como parte del seguimiento del objetivo es necesario actualizar los resultados obtenidos cada cierre de mes con el fin de actualizar el indicador y ajustar la proyección al objetivo inicial.

A continuación, se muestra la actualización considerando el cierre del mes de Agosto:

Figura 47: Costo de Oportunidad - Agosto

![Diagrama de costo de oportunidad actualizado]

Fuente: Elaboración Propia

Como se observa, en el mes de agosto se obtuvo una pérdida de S/. 712 soles para la familia de planchas, superior al esperado, ocasionado por dos pedidos cancelados esta vez por la demora en la entrega. Para lograr el objetivo del 75% de ahorro en esta familia, todos los costos de oportunidad mensuales siguientes tendrán que estar necesariamente por debajo del promedio indicado, lo cual implica un control más riguroso por parte del Maestro de Operaciones.
En cuanto al nivel de servicio, se obtuvo un 69% que representa un incremento respecto al mes anterior.

Actualización – Mes de Setiembre

El resultado obtenido tras el cierre del mes de Setiembre fue el siguiente:
En el mes de Setiembre el costo de oportunidad se redujo a S/. 367 soles por falta de material en stock. La pérdida está por debajo del promedio indicado y le da al objetivo de ahorro acumulado una mayor probabilidad de ser alcanzado y/o superado. Se espera que las ventas perdidas posteriores, si lo hubiese, se mantengan o sean menores a este valor a través del control más riguroso que actualmente se está llevando a cabo y un mejor control en las existencias actuales.

Figura 50: Nivel de Servicio - Setiembre

En cuanto al nivel de servicio, el resultado fue de 71% que representa un incremento de 2% con respecto al mes de agosto.
Actualización – Mes de Octubre

El resultado obtenido tras el cierre del mes de Octubre fue el siguiente:

Figura 51: Costo de Oportunidad - Octubre

En el mes de octubre el costo de oportunidad se redujo aún más a S/. 211 soles nuevamente por falta de material en stock. La pérdida continúa por debajo del promedio mostrado, por lo cual de mantenerse la estadística o incluso seguir obteniendo resultados favorables, el objetivo de ahorro mencionado sería alcanzado o superado en el mejor de los casos.

Figura 52: Nivel de Servicio - Octubre

Fuente: Herramienta de programación y control
Elaboración propia
El nivel de servicio tuvo un resultado de 73%, el cual mantiene la tendencia al incremento presentada desde el mes de agosto.

Atualización – Mes de Noviembre

El resultado obtenido tras culminar el mes de Noviembre fue el siguiente:

Figura 53: Costo de Oportunidad - Noviembre

En noviembre el costo de oportunidad continuó disminuyendo y alcanzó un monto de S/. 187 soles identificados en un pedido cancelado por el cliente tras la demora en la entrega de la empresa por el lote solicitado. Se observa ya una tendencia decreciente mensual, lo cual es un indicador favorable para el objetivo e intereses del equipo del proyecto y empresa.
Este mes el nivel de servicio tuvo un resultado de 76%, el cual ha representado su mejor incremento, con un valor de 3% comparado al mes de octubre.

Actualización – Mes de Diciembre

Finalmente, los resultados del mes de Diciembre fueron los siguientes:

Figura 55: Costo de Oportunidad - Diciembre
En diciembre el costo de oportunidad alcanzó un monto de S/. 151 soles identificados nuevamente en un pedido cancelado por el cliente. El resumen con los resultados alcanzados finales se dará en el siguiente punto.

Figura 56: Nivel de Servicio - Diciembre

<table>
<thead>
<tr>
<th>Nivel de Servicio por Familia</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.5%</td>
</tr>
<tr>
<td>21.5%</td>
</tr>
</tbody>
</table>

- Entrega de pedidos fuera de la fecha programada
- Entrega de pedidos en la fecha programada

Fuente: Herramienta de programación y control
Elaboración propia

En cuanto al nivel de servicio, se obtiene un resultado de 78.5%, incrementando el indicador en un 2.5% con respecto al mes de noviembre. Esta mejora en el nivel de servicio de la empresa, está reflejada en el control dado a la producción, pues ya no se toman decisiones de manera empirica, ahora se atienden las ordenes según la disponibilidad de los recursos.
4.2.3. Resumen de Indicadores: Segundo Semestre 2016

Tras presentar los resultados anteriores de acuerdo al seguimiento dado por el equipo del proyecto en la empresa; a continuación, se presenta un resumen de los dos objetivos planteados inicialmente (ahorro económico y nivel de servicio) y que desde la ejecución del modelo hasta el cierre del año 2016 se han reportado:

4.2.3.1. Costo de oportunidad:

Figura 57: Costo de Oportunidad – Segundo Semestre 2016

Como se mencionó inicialmente, para alcanzar un ahorro de S/. 11,052 soles en el segundo semestre del año, se debía perder como máximo S/. 3,684 soles en total. Tras obtener los montos reales de este periodo se observa en el indicador que las pérdidas acumuladas alcanzaron un monto de S/. 3,065 soles en la familia de planchas, lo cual representa un ahorro real de S/. 11,670 soles.

Este monto supera el esperado durante el planteamiento de este objetivo, y representa un ahorro del 79.2%, respecto al 75% propuesto en ventas perdidas.
4.2.3.2. Nivel de Servicio:

El segundo indicador es el del nivel de servicio como se muestra a continuación:

Figura 58: Nivel de Servicio – Segundo Semestre 2016

Como se observa, al cierre del año 2016 se alcanzó un nivel de servicio del 78.5% en pedidos entregados a tiempo. Esto refleja un incremento del 10.5% respecto a la primera medición dada durante la prueba piloto en el mes de Julio. Cabe resaltar que el objetivo planteado por la empresa en este punto era alcanzar como mínimo un nivel de servicio del 80% al término segundo semestre, por lo cual a pesar de haberse dado tras el término del año una brecha de 1.5%, se resalta el incremento considerable en el nivel de servicio actual de la empresa, y se espera en los siguientes meses poder superar el umbral planteado.
4.2.3.3. Productividad:

El tercer indicador es el de productividad:

Figura 59: Productividad – Segundo Semestre 2016

Se observa que progresivamente se ha logrado que la productividad gire en torno al tiempo de ciclo óptimo identificado en campo. Así, a partir del mes de septiembre se incrementó de 2 a 3 planchas por hora hombre, lo cual ayudó a reducir la necesidad de horas extras.
4.2.3.4. Capacidad utilizada:

El cuarto indicador es el de capacidad utilizada.

Figura 60: Capacidad Utilizada – Segundo Semestre 2016

Como se observa, durante el segundo semestre del año 2016 se continuaba empleando horas extra, debido a la curva de aprendizaje en la asignación de operadores en las estaciones de servicio. Sin embargo, a partir de noviembre se observa como la capacidad utilizada respecto a la jornada regular fue ajustándose a esta, hasta que en el mes de diciembre no se vio la necesidad de horas extras. Por ello, a partir de este resultado se consigue una capacidad disponible en diciembre de 10% la cual se utilizó para la asignación de otras tareas.
4.2.3.5. Cumplimiento de abastecimiento:

Por último, el indicador de nivel de cumplimiento de abastecimiento.

Figura 61: Nivel de cumplimiento de abastecimiento – Segundo Semestre 2016

Como se observa, al cierre del año 2016 se obtuvo un cumplimiento de abastecimiento de 83%, debido a que de los seis lotes de suministros pedidos, uno de ellos no se recibió en la fecha esperada por falta de stock del proveedor habitual lo que impactó también en las ventas perdidas del mes de diciembre. Como contingencia en estos casos, se opta por otros proveedores asumiendo el precio dispuesto por el vendedor. Sin embargo, a diferencia de los meses previos, el nivel de cumplimiento en el suministro incrementó.
4.2.4 Costos involucrados del proceso

Tras el cierre del segundo semestre del año en estudio, se levantó la información de los costos involucrados en el proceso que presentaron mayores diferencias respecto al año anterior que generó un incremento considerable en el margen de ganancia para la empresa.

Costo de transporte

La empresa cuenta con una camioneta de carga, en la cual lleva los materiales y los lotes de pedido en la carreta de la misma. Como se mencionó, el lote óptimo para la familia de planchas es de 280 unidades, lo cual debido a la capacidad de carga del vehículo, este debe realizar 03 viajes por pedido para obtener el lote indicado. El costo del transporte incluye el salario del conductor, gastos en combustible, peajes, mantenimiento, y gastos menores en ruta.

Costo de pedido:

El costo de pedido pactado con el proveedor es de S/. 5,565 soles por lote de planchas.

Costo de faltantes:

El costo de faltantes se identifica como las ventas perdidas por mala programación de producción.

Costo de horas hombre extra:

El costo de horas hombre extra se identifica como las horas adicionales fuera de la jornada habitual laboral por sobrecarga de trabajo o por una inadecuada asignación de recursos.

De esta manera, para el segundo semestre del año 2015 se obtuvo la siguiente información:
Por otro lado, para el segundo semestre del año 2016, donde se implementó el proceso a través del PMBOK, se registró la siguiente información:

Tabla 94: Costos comparativos - Año 2016

<table>
<thead>
<tr>
<th>Mes</th>
<th>N° Viajes</th>
<th>Costo de Transporte</th>
<th>N° Pedidos</th>
<th>Costo de pedidos</th>
<th>N° Faltantes</th>
<th>Costo de faltantes (Planilla)</th>
<th>Costo de hr-hh extra</th>
<th>Costo de hr-hh extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julio</td>
<td>24</td>
<td>S/. 2,448.00</td>
<td>8</td>
<td>S/. 44,520.00</td>
<td>46</td>
<td>S/. 1,437.00</td>
<td>42</td>
<td>S/. 261.73</td>
</tr>
<tr>
<td>Agosto</td>
<td>27</td>
<td>S/. 2,604.00</td>
<td>9</td>
<td>S/. 50,085.00</td>
<td>23</td>
<td>S/. 712.00</td>
<td>73</td>
<td>S/. 456.25</td>
</tr>
<tr>
<td>Setiembre</td>
<td>27</td>
<td>S/. 2,604.00</td>
<td>9</td>
<td>S/. 50,085.00</td>
<td>12</td>
<td>S/. 367.00</td>
<td>42</td>
<td>S/. 261.73</td>
</tr>
<tr>
<td>Octubre</td>
<td>27</td>
<td>S/. 2,604.00</td>
<td>9</td>
<td>S/. 50,085.00</td>
<td>7</td>
<td>S/. 211.00</td>
<td>65</td>
<td>S/. 406.25</td>
</tr>
<tr>
<td>Noviembre</td>
<td>24</td>
<td>S/. 2,448.00</td>
<td>8</td>
<td>S/. 44,520.00</td>
<td>6</td>
<td>S/. 187.00</td>
<td>25</td>
<td>S/. 153.83</td>
</tr>
<tr>
<td>Diciembre</td>
<td>18</td>
<td>S/. 2,136.00</td>
<td>6</td>
<td>S/. 33,390.00</td>
<td>5</td>
<td>S/. 151.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S/. 14,688.00</td>
<td>S/. 267,120.00</td>
<td></td>
<td>S/. 3,065.00</td>
<td></td>
<td></td>
<td></td>
<td>S/. 1,539.80</td>
</tr>
</tbody>
</table>

Fuente: Fierrosol S.A.C.
Elaboración propia

De lo mostrado anteriormente, se observa que hubo un ahorro de S/. 47,025.45 soles en los costos indicados, de los cuales el 71% es debido a la reducción de número de pedidos a pesar de que la demanda en el año 2016 fue superior al 2015; pero esto se debe al proceso implementado ya que se lleva un control de las entradas y salidas requeridas. Anteriormente, la empresa emitía las órdenes de compra según lo que observaba en el almacén, y no por requerimiento de producción. Por otro lado, el 25% del ahorro indicado es de los costos por faltante, ya que se ha reducido el nivel de ventas perdidas, generando un nivel de servicio de 78.5%.
4.2.5. Cumplimiento de Requisitos

Tabla 95: Matriz de cumplimiento de requisitos

<table>
<thead>
<tr>
<th>MATRIZ DE TRAZABILIDAD DE REQUISITOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre del Proyecto: Implementación de un Sistema de Planificación, Programación y Control</td>
</tr>
<tr>
<td>Objetivo general del proyecto: Reducir el nivel de ventas perdidas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de Requisitos</th>
<th>Necesidades de Negocio, Oportunidades, Metas y Objetivos</th>
<th>% Cumplimiento</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>El requisito surge debido al nivel de entregas retrasadas al cliente, generando insatisfacción del mismo.</td>
<td>Se busca cumplir con la fecha de entrega acordada inicialmente con el cliente</td>
<td>100</td>
<td>Se incrementó de 68 a 78.5% el nivel de servicio al 01/01/17.</td>
</tr>
<tr>
<td>002</td>
<td>El requisito surge debido al desconocimiento de las órdenes de producción que son prioritarias semanalmente.</td>
<td>Establecer objetivos de producción semanalmente y controlar su cumplimiento</td>
<td>100</td>
<td>Establecido durante la segunda fase del proyecto.</td>
</tr>
<tr>
<td>003</td>
<td>El requisito surge debido al desconocimiento del nivel de existencias diario de productos.</td>
<td>Mantener informados a los responsables de cada área sobre el nivel de existencias diario en la empresa</td>
<td>100</td>
<td>Ejecutado desde la tercera fase del proyecto.</td>
</tr>
<tr>
<td>004</td>
<td>El requisito surge debido a la necesidad de saber cuándo y cuántas planchas comprar de acuerdo al nivel de demanda.</td>
<td>Poseer un calendario de compras donde se especifique la cantidad adecuada de planchas a comprar</td>
<td>100</td>
<td>Ejecutado desde la tercera fase del proyecto.</td>
</tr>
<tr>
<td>005</td>
<td>El requisito surge debido a que la empresa no cuenta con registros en el área de Operaciones que le permita llevar un control diario</td>
<td>Controlar la producción diariamente apoyada en formatos</td>
<td>100</td>
<td>Ejecutado desde la tercera fase del proyecto.</td>
</tr>
<tr>
<td>006</td>
<td>El requisito surge debido a la estimación de las compras y dirección en el área de Operaciones de una manera empírica</td>
<td>Contar con una hoja de cálculo que permita optimizar la programación y control de la producción de planchas</td>
<td>100</td>
<td>Establecido durante la segunda fase del proyecto.</td>
</tr>
<tr>
<td>007</td>
<td>El requisito surge debido al costo de oportunidad perdido por no contar con el producto disponible para la venta</td>
<td>Disponibilidad de planchas para la puesta en venta de acuerdo a la demanda</td>
<td>100</td>
<td>Se incrementó de 70 a 94% la disponibilidad al 01/01/17.</td>
</tr>
</tbody>
</table>

Fuente: The Project Management Institute 2013
Elaboración propia
4.2.6. Acta de Constitución del Proyecto

A continuación, se presenta el primer entregable del proyecto, este es el acta de constitución del proyecto elaborada al inicio del proyecto el cual es el documento formal que autoriza la realización del proyecto en la empresa Fierrosol S.A.C.

Figura 62: Acta de Constitución del Proyecto

<table>
<thead>
<tr>
<th>Versión</th>
<th>Hecha por:</th>
<th>Revisada por:</th>
<th>Aprobada por:</th>
<th>Fecha de Elaboración</th>
<th>Última Actualización</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Wilfredo Salinas / Cristian Andrade</td>
<td>Guillermo Zúñiga</td>
<td>Roberto Angulo Canales</td>
<td>29/03/2016</td>
<td>03/09/2016</td>
</tr>
</tbody>
</table>

ENUNCIADO DEL PROYECTO
Implementación de un Sistema de Planificación, Programación y Control

OBJETIVO GENERAL DEL PROYECTO
El proyecto a realizar tiene como objetivo general diseñar e implementar un Sistema de Planificación, Programación y Control de la Producción de planchas en la empresa FIERROSOL S.A.C., aplicando los principios de la Guía de los Fondamentos para la Dirección de Proyectos (PMBOK), teniendo como resultado la reducción de las ventas perdidas y el aumento del nivel de servicio mediante procedimientos, flujos de proceso, formatos y herramientas nuevas.

DESCRIPCIÓN DEL PROYECTO
El proyecto se llevará a cabo según la estructura del ciclo de vida:
1. Inicio: Entrega del Acta de Constitución del Proyecto
2. Organización y preparación: Desarrollo del Plan de trabajo
3. Ejecución del trabajo: Ejecución del Plan de trabajo

Es importante tomar en cuenta que en cada etapa del ciclo de vida se debe llevar un seguimiento y control para asegurar la calidad del proyecto.

FACTORES AMBIENTALES DE LA EMPRESA

<table>
<thead>
<tr>
<th>FACTORES POSITIVOS</th>
<th>FACTORES NEGATIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Infraestructura, instalaciones y equipos adecuados</td>
<td>1. Cultura no flexible al cambio</td>
</tr>
<tr>
<td>2. Empresas metalmeclánicas dentro de la zona</td>
<td>2. No existe una Gestión de Recursos Humanos dedicada</td>
</tr>
<tr>
<td>no poseen un Sistema de Planificación, Programacion y Control</td>
<td>3. Desconocimiento del Sistema de Planificación, Programación y Control</td>
</tr>
<tr>
<td>3. Los interesados del proyecto son conscientes y tolerantes a los riesgos del proyecto</td>
<td>4. No existen canales de comunicación establecidos en la empresa</td>
</tr>
<tr>
<td>5. No poseen herramientas de software diseñadas especialmente para la programación y control</td>
<td></td>
</tr>
</tbody>
</table>

ACTIVOS DE LOS PROCESOS DE LA ORGANIZACIÓN

<table>
<thead>
<tr>
<th>PROCESOS Y PROCEDIMIENTOS</th>
<th>BASE CORPORATIVA DE CONOCIMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>La empresa no posee plantillas, procedimientos, lineamientos y procesos documentados referidos a la área de Operaciones</td>
<td>La empresa posee base de datos históricos de ventas, compras y finanzas</td>
</tr>
</tbody>
</table>

FIRMA DE REVISION Y AUTORIZACION:

[Firma: Fierrosol S.A.C.]

Gerente General

Fuente: Elaboración propia
4.2.7. Carta de validación del proyecto

Finalmente, como parte de la validación del proyecto de tesis. Se solicitó a la empresa una carta mediante la cual se confirme que se ha estado trabajando el proyecto de tesis en la empresa y el desarrollo del proyecto se ha dado en la misma, obteniendo los resultados mostrados hasta la fecha.

Figura 63: Carta de Levantamiento del Proyecto

Chorrillos, 03 de septiembre de 2016

_Señores,
Universidad Peruana de Ciencias Aplicadas
Presente._

FIERROSOL S.A.C., con RUC No 20431762827, con domicilio en Av. El Sol 1024 D – La Campaña, distrito de Chorrillos, provincia de Lima, Departamento de Lima, ante ustedes nos presentamos y atentamente decimos que:

Que, mediante la presente Carta, FIERROSOL S.A.C. valida que los señores Cristian Andrade Ortiz y Wilfredo Salinas Roncal han estado desarrollando, durante el presente año, su proyecto de tesis en la empresa. Por lo tanto, afirmamos que la información presentada por los estudiantes es real y la puesta en marcha del proyecto se está dando satisfactoriamente, pues está cumpliendo con la necesidad por la cual surgió el proyecto.

Sin otro particular, nos despedimos.

Atentamente,

Roberto Angulo Canales
Gerente General
FIERROSOL S.A.C.

A. Guillermo Zúñiga Escalante
Contador – Jefe de RRHH
FIERROSOL S.A.C.

Fuente: Fierrosol S.A.C
En el presente capítulo, se detalló el desarrollo de la implementación del proceso de planificación, programación y control en la empresa Fierrosol S.A.C., iniciando con la descripción de todas las actividades que involucran su realización dentro de la misma empresa; asimismo, se detalla el tiempo real que tomó llevar a cabo cada actividad, así como su costo real. También, se describieron los riesgos ocurridos que generaron retraso en la implementación del proceso. Seguidamente, se detallaron los costos estimados de las actividades de la fase de ejecución realizados en el capítulo 3 y los costos reales de esta fase hasta la actualidad, ya que algunas actividades dentro de esta fase aún están en ejecución. Además, se detallaron también los costos reales de todas las actividades del proyecto identificadas en el capítulo 2.

Por último, se presentó la validación del proyecto mediante los impactos obtenidos con la implementación y los objetivos planteados a partir de esta. Asimismo, se mostró la carta entregada por la empresa como validación de lo realizado hasta la fecha. A partir de los resultados obtenidos, en el siguiente capítulo se darán las conclusiones y recomendaciones del proyecto de Tesis.
CAPÍTULO 5 : CONCLUSIONES Y RECOMENDACIONES

En el presente capítulo se presentarán las conclusiones obtenidas tras el desarrollo del proyecto de tesis, donde se detallarán los puntos más resaltantes para los integrantes del equipo del proyecto. Consecutivamente, se presentarán las recomendaciones identificadas a lo largo del desarrollo del mismo, las cuales están dirigidas a la empresa en estudio.

Finalmente, con las conclusiones y recomendaciones descritas a continuación, el presente proyecto se dará por culminado y se espera que el modelo continúe su marcha en la empresa de manera espontánea.
5.1. Conclusiones

Tras la implementación del proceso de planificación, programación y control en la empresa, se obtuvieron resultados alentadores para la misma y sobretodo se recogieron los siguientes puntos importantes a considerar tras lo observado durante todo el ciclo de vida del proyecto:

Se observa cómo desde la fase de ejecución del modelo del proceso propuesto se comenzaron a obtener los primeros resultados a favor de los intereses económicos de la empresa, traducidos en un ahorro de dinero considerable tras la disminución de las ventas perdidas en la familia de planchas. Desde el mes de Julio, inicio de la fase de ejecución, hasta el cierre del fin de mes Diciembre se registró un ahorro de S/. 11,670 soles respecto al año 2015. El objetivo de ahorro fue de S/. 11,052 soles hasta fines del 2016, lo cual se confirma y validan los beneficios de la implementación del modelo de planificación, programación y control, entre ellos como en este caso, un beneficio económico. Asimismo, se evidenció un ahorro considerable en los costos por pedido, transporte y por horas extras.

Se da una relación directamente proporcional entre el nivel de servicio entregado al cliente y la disminución de las ventas perdidas, lo cual involucra un mayor compromiso por parte de la empresa. Sin embargo, para la obtención de los resultados mostrados no solo bastó un modelamiento de proceso y capacitación a los trabajadores, es de suma importancia el seguimiento y control de las actividades por parte de una persona comprometida con la función, en este caso dado por el maestro de operaciones de manufactura de Fierrosol S.A.C. quien estuvo a tiempo completo supervisando la ejecución de actividades del flujo de proceso propuesto y la utilización de formatos de control de la producción.

Se corrobora el gran aporte del PMBOK como guía para la gestión de proyectos en las PYME mencionado por Romero, ya que presenta distintas herramientas y técnicas de planificación sencillas y adaptables a cualquier tipo de empresa, como la EDT, formatos de evaluación de
desempeño, matrices de contingencias, entre otros. Asimismo, se resalta la importancia de la realización de procedimientos para la implementación de cualquier tipo de proceso, como mencionaron los autores Ortiz y Caicedo, ya que de esta manera el proyecto de implementación se dio de una manera más flexible y fácil de llevar a cabo. Las estrategias de desarrollo del proyecto se tuvieron que revisar periódicamente ya que tenían que estar ajustadas a la realidad conforme se iban ejecutando las actividades; solo de esta manera se pudo tener una visión acertada que permitía controlar las subsiguientes actividades.

Debido a la variabilidad de la demanda presentada, naturalmente en la empresa se tuvo que dar un cambio en la interacción de los recursos dados como mencionan Cichos y Aurich. La implementación llevada a cabo, a pesar de tener un alcance limitado en cuanto a la adquisición de equipos y contratación de personas, implicó principalmente el costo hora hombre del personal de la empresa sobretodo del maestro de operaciones y del equipo del proyecto durante la duración del proyecto. De esta manera, se observa cómo a través del modelamiento de un proceso a través del reordenamiento y asignación de nuevas actividades que interactúen con los demás procesos existentes, se pueden alcanzar objetivos económicos considerables como el observado. La madurez continua del proceso actual es la clave para la consecución de resultados.

Durante la fase de inicio y planificación se presentaron las barreras culturales mencionadas por Vom Brocke y Sinnl, las cuales generaron retrasos en las ejecuciones de algunas actividades programadas, así como información incompleta dada a inicios del proyecto. Esta barrera fue vencida con el paso del tiempo y principalmente, con la confianza brindada por el equipo del proyecto y el gerente general hacia los demás trabajadores. Además, se resalta la importancia de la capacitación periódica y evaluaciones de desempeño a los trabajadores para que el modelo se cumpla bajo lo establecido. Dicho esto, se le asigna una gran atribución al papel desempeñado por la gestión de recursos humanos principalmente en una etapa de cambio organizacional.
La identificación de los procesos clave y su debida documentación previa al diseño e implementación fue de vital importancia para poder analizar y desarrollar una estrategia de gestión de procesos para lograr la planificación, programación y control. Asimismo, fue necesario documentar los indicadores a desarrollarse para medir el éxito del proyecto, reflejado en la disminución de las ventas perdidas. Por último y no menos importante, el desarrollo de procedimientos a partir del modelo propuesto, contribuyen a la formalización y comprensión del proceso implementado para quien lo revise.

Durante la prueba piloto se observó que existen factores externos que pueden afectar al proceso implementado incluso esté llevándose a cabo adecuadamente. Factores externos como se dio con el desabastecimiento de materiales por parte del proveedor, lo cual es responsabilidad del área logística pero que tiene un efecto perjudicial para el proceso de programación y control, y más aun con el cliente. Por ello, decimos que existe un efecto en cadena siempre que exista un flujo de información entre clientes internos de la empresa y sobretodo con los que se relacionan con el proceso implementado, ya que como se observó interactúa con diversas áreas de soporte y planificación.

La implementación de un proyecto resulta compleja cuando ocurren inconvenientes que afectan la ejecución de este. Durante el plan de implementación se identificaron riesgos que podrían ocurrir en cualquier momento; fue en la etapa de ejecución en donde se evidenciaron dos de ellos que amenazaron con la continuidad del proyecto. Sin embargo, debido a un previo plan de contingencia el impacto negativo de estos fue detenido a tiempo, por lo cual se confirma la necesidad e importancia de elaborar un plan de riesgos en cualquier proyecto, en donde se pueden reflejar con más frecuencia durante la puesta en marcha del mismo; por lo cual, tanto los gestores como los interesados del proyecto deben conocer las acciones preventivas y mitigadoras de los mismos.
A lo largo de la duración del proyecto, se ha observado cómo las fechas programadas de ejecución de cada actividad en algunas se ha visto atrasada o anticipada, así como también los costos estimados implicados en estas, cambiaron. Es importante resaltar que los cambios dados no han sido por decisión de una sola persona, por el contrario, cualquier cambio dado durante el proyecto debe ser previamente dialogado, evaluado y comunicado a los interesados del mismo. Por ello, se reconoce la importancia de la comunicación en un sentido horizontal en la empresa, de modo que los cambios dados no afecten a ninguna parte involucrada, y el proyecto tenga un impacto positivo frente a los demás procesos.

Para poder llevar a cabo la implementación del proceso propuesto, se vio conveniente junto a los interesados del proyecto ejecutar previamente un piloto que permita evidenciar los puntos débiles que el modelo presenta, así como también observar el comportamiento de los trabajadores durante la marcha del mismo. Tras la finalización de este, se facilitó la elaboración de indicadores, así como también el replanteamiento y ajuste del modelo que permitió a la empresa posteriormente alcanzar los ahorros mensuales esperados. Por ello, se confirma la importancia de llevar a cabo, de ser posible, una prueba piloto previa a la implementación para la mejora del proceso.
5.2. Recomendaciones

Se recomienda evaluar y redefinir otros procesos dentro de la empresa como, por ejemplo, el proceso logístico y compras, el cual impacta altamente con el proceso de planificación, programación y control, ya que sin suministro de materiales no es posible fabricar los productos ofrecidos por la empresa. Se trata pues, que la empresa evalúe también procesos adicionales al de manufactura que puedan generar valor a este y a los demás procesos involucrados en la cadena de valor.

Se sugiere una nueva distribución de planta debido a que actualmente las distribuciones de las estaciones de trabajo no están secuenciadas de acuerdo al flujo de proceso habitual de operaciones dado en la empresa, por lo que se observa tiempos de recorrido innecesarios. Esto optimizaría el tiempo empleado en las actividades de manufactura, y la atención y elaboración de pedidos se agilizaría, lo que contribuye al nivel de servicio en tiempo de entrega al cliente.

A partir de los resultados obtenidos en la familia de planchas, se recomienda integrar a las demás familias de productos en el proceso implementado para elevar los beneficios económicos y de control de producción en la empresa. Esto conlleva a que el proceso pueda tener complicaciones en cuanto a programación debido a la mayor información poseída; por ello, se sugiere además una nueva etapa de inducción que refuerce, al igual que la primera capacitación dada, el correcto procedimiento para la programación y control.

Se sugiere el replanteamiento de objetivos en la empresa una vez logrados, de esta manera el proceso implementado madura con las consecuencias de objetivos y da pie a una mejora continua de lo que la empresa crea conveniente en torno a la manufactura según el desarrollo de la misma con el nuevo proceso.

Se sugiere mantener actualizados los procedimientos elaborados durante el proyecto para que una vez dado el cierre del mismo, la empresa pueda tener la capacidad de continuar con el proceso implementado sin ningún problema, y de haber algún registro y/o actividad que sea necesaria revisar, el procedimiento permitirá al trabajador dar las instrucciones adecuadas que permitan el desempeño para lo cual fue implementado el proceso.
Durante el desarrollo del proyecto dado en las instalaciones de la empresa, se observó que muchas de estas no se encuentran en un estado adecuado de mantenimiento, así como también se detectó en algunos trabajadores la falta de equipos de protección de personal acorde a la labor que desempeñaban. Por ello, se recomienda implementar un sistema de seguridad en la empresa debido a lo mencionado, y con ello asegurar principalmente la integridad de los trabajadores.

Como se mencionó desde un principio, la empresa trabaja bajo una estructura de fabricación bajo pedido, producción para acumular inventarios; es decir, tiene un sistema híbrido de producción. Esto conlleva a un control más riguroso que implica la reorganización de la empresa y rediseño de flujos de procesos, como se ha visto durante el presente documento para el caso del modelo propuesto. Sin embargo, el modelo se haría mucho más sencillo y flexible si la empresa contara con un software de programación estadística y estimación de demanda; para ello, la empresa debe contar con un presupuesto considerable que permita la compra del mismo, pero que en el mediano plazo permita optimizar aún más los recursos.
6. BIBLIOGRAFÍA

CAPITULO 1

Estado del arte

Normativa

Conceptos generales

Casos de éxito

CAPITULO 2

CAPITULO 3

GUTIERREZ, NATALIA (2014) Diseño de plan maestro de producción para la pesquera Transartartic. Chile : Universidad Austral de Chile

CAPITULO 4

Anexo 1: Entrevista número 1 al dueño de la empresa Fierrosol S.A.C.

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - ROBERTO ANGULO</td>
</tr>
<tr>
<td>1. ¿Por qué busca implementar un Sistema de Programación y Control?</td>
</tr>
<tr>
<td>Porque la demanda de planchas ha aumentado y no tenemos un control de las existencias, las compras las hacemos estimando cuando se acabarán sin utilizar algún programa, no contamos con un control en las compras, entre otras cosas más.</td>
</tr>
<tr>
<td>2. ¿Desde cuándo la empresa tiene estos problemas?</td>
</tr>
<tr>
<td>La empresa comenzó sus operaciones en el año 2011. Desde esa fecha la empresa ha ido creciendo y con ello, la demanda ha aumentado por lo que el control de la producción se complica más.</td>
</tr>
<tr>
<td>3. ¿Y por qué recién este año busca su implementación? ¿Cuáles han sido las barreras?</td>
</tr>
<tr>
<td>Porque este año hemos tenido muchos pedidos entregados fuera de tiempo debido al desabastecimiento de planchas y a la mala distribución de la carga de trabajo, lo que ha generado la pérdida de ventas durante el año pasado.</td>
</tr>
<tr>
<td>4. Entonces, ¿Está dispuesto a seguir el cronograma que será establecido en el proyecto?</td>
</tr>
<tr>
<td>Por supuesto, haremos lo que sea con tal de mejorar nuestra situación actual.</td>
</tr>
<tr>
<td>5. ¿Cuáles son los resultados esperados tras su implementación?</td>
</tr>
<tr>
<td>Tras este proyecto esperamos poder conocer las existencias de planchas en tiempo real para una programación adecuada y saber cuánto producir, para evitar nuevamente ventas perdidas como el año pasado.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 2: Entrevista número 2 al personal de la empresa Fierrosol S.A.C.

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - GUILLERMO ZÚÑIGA</td>
</tr>
</tbody>
</table>

1. ¿Conversó Roberto con usted sobre el proyecto de implementación?

Sí, me comentó que quiere hacer cambios en la empresa. Sobre todo en la parte de manufactura para poder controlar y programar las actividades.

2. ¿Qué opina respecto al sistema que se quiere implementar?

Me parece una muy buena idea, de hecho con esto habrá mayor orden en las operaciones y las demás áreas se verán favorecidas de alguna manera.

3. ¿Lo beneficia en algún aspecto? ¿Por qué?

Sí, ya que para realizar el balance contable financiero los montos deben cuadrar con lo que hemos producido, y muchas veces no cuadra. En realidad esto beneficia más a los muchachos del área de producción.

4. ¿Estaría dispuesto a contribuir con el proyecto brindado cierta información referida a sus actividades?

Sí, de hecho con esto podré consultarle al maestro y podré corroborar la información ingresada al sistema.

5. ¿Qué espera tras el cierre del proyecto?

Espero principalmente que la empresa logre su cometido en cuanto a la reorganización del área de Operaciones, ya que considero que es el área principal que mueve la empresa. De igual manera, espero verme beneficiado con lo que te comente anteriormente.

Fuente: Elaboración propia
<table>
<thead>
<tr>
<th>ENTREVISTA NO. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - MAXIMILIANA GUZMAN</td>
</tr>
</tbody>
</table>

1. ¿Conversó Roberto con usted sobre el proyecto de implementación?

Sí, me comentó que quiere reorganizar la empresa empezando por el área de Operaciones. Quiere llevar un control de lo que está sucediendo en ella.

2. ¿Qué opina respecto al sistema que se quiere implementar?

Es muy importante ya que usualmente llegan los clientes, y preguntan por su pedido que muchas veces aún no está terminado como se acordó, y toda la responsabilidad recae en el Maestro que anda ocupado siempre y le es difícil controlar y revisar las fechas comprometidas con los clientes.

3. ¿Lo beneficia en algún aspecto? ¿Por qué?

Sí, ya que una de mis funciones es la de coordinar las compras para abastecer al área de Operaciones tras la solicitud del Maestro, pero muchas veces requieren nuevas planchas en el momento, lo cual es complicado conseguir. En esos casos la responsabilidad es transferida a mí, y yo no me siento a gusto con ello.

4. ¿Estaría dispuesto a contribuir con el proyecto brindado cierta información referida a sus actividades?

Sí, lo que necesiten.

5. ¿Qué espera tras el cierre del proyecto?

Espero en primer lugar que se cumpla el objetivo de implementar el sistema que mencionó Roberto, y con ello yo también poder realizar compras programadas y no de último momento. Se llevaría un orden incluso para mí.

Fuente: Elaboración propia
Anexo 4: Entrevista número 4 al personal de la empresa Fierrosol S.A.C.

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - LUIS HUISA</td>
</tr>
</tbody>
</table>

1. ¿Conversó Roberto con usted sobre el proyecto de implementación?

Sí, de hecho muchas veces me acerqué a su oficina para comentarle los problemas que tenía para supervisar todas las actividades del área, y que últimamente esto iba creciendo.

2. ¿Qué opina respecto al sistema que se quiere implementar?

Me parece una muy buena idea por parte de Roberto, esto ayudará al área enormemente.

3. ¿Lo beneficia en algún aspecto? ¿Por qué?

Me beneficia en todos los aspectos. Con esto podría programar las actividades, y solo tendría que controlar que se lleve a cabo. También podría saber cuándo necesitamos más planchas y no estar solicitando a última hora a Compras que compre planchas. También podría saber la carga que tiene cada operador, y cómo sería mejor repartirla.

4. ¿Estaría dispuesto a contribuir con el proyecto brindado cierta información referida a sus actividades?

Definitivamente

5. ¿Qué espera tras el cierre del proyecto?

Poder en adelante aprender a programar y controlar las actividades diarias del área, así como manejar bien el Excel que proponen.

Fuente: Elaboración propia
Anexo 5: Entrevista número 5 al personal de la empresa Fierrosol S.A.C.

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - ALFONSO PIZARRO</td>
</tr>
</tbody>
</table>

1. ¿Conversó Roberto con usted sobre el proyecto de implementación?

Sí, me pareció una muy buena idea.

2. ¿Qué opina respecto al sistema que se quiere implementar?

Que de esa manera podríamos tener las actividades mejor organizadas en el área de Operaciones, y el Maestro no tendría tantos problemas a diario con los clientes.

3. ¿Lo beneficia en algún aspecto? ¿Por qué?

Sí, principalmente en llevar un control cuántas planchas ingresan y salen del almacén, ya que Compras siempre me consulta sobre ello, pero no cuento con un registro adecuado, ya que son muchas planchas y esto se ha ido acumulando, y no ha habido mucha comunicación.

4. ¿Estaría dispuesto a contribuir con el proyecto brindado cierta información referida a sus actividades?

Así es.

5. ¿Qué espera tras el cierre del proyecto?

Espero que puedan implementar el sistema en el área para poder ver los resultados más adelante, y a su vez poder yo beneficiarme llevando un control de lo que te contaba.

Fuente: Elaboración propia
Anexo 6: Ficha de Actividad N° 01

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
FICHA DE ACTIVIDAD N° 02

Nombre de la actividad
Establecer cantidad de máquinas requeridas

Fecha de ejecución
17 de Junio del 2016

####Responsables involucrados
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilfredo Salinas</td>
<td>Responsable de proyecto</td>
</tr>
<tr>
<td>Cristian Andrade</td>
<td>Responsable de proyecto</td>
</tr>
<tr>
<td>Luis Huisa</td>
<td>Maestro de operaciones</td>
</tr>
</tbody>
</table>

Duración
01 día

Recursos
1. MS Microsoft Excel 2013
2. Máquinas
3. Cuadernillo de apuntes

Objetivo General
Calcular la cantidad de máquinas requeridas para la operación

Costos estimados
S/. 122.10

Descripción de la actividad
- Identificar máquinas actuales de la empresa
- Identificar capacidad de producción de máquinas
- Consultar al maestro de operaciones
- Determinar el tiempo requerido para el producto según experiencia del maestro de operaciones
- Determinar las máquinas necesarias para cada solicitud

####Observaciones y recomendaciones
Se recomienda para asignar las máquinas requeridas, apoyarse con el Maestro de operaciones que posee mayor conocimiento sobre la capacidad, así como el nivel de actividad de las máquinas.

Fuente: Elaboración propia
<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD Nº 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 9: Ficha de Actividad N° 04

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 04</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
<td>Establecer inventario mínimo para reposición</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
<td>17 de Junio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
<td>Wilfredo Salinas - Responsable de proyecto</td>
</tr>
<tr>
<td></td>
<td>Cristian Andrade - Responsable de proyecto</td>
</tr>
<tr>
<td></td>
<td>Alfonso Pizarro - Encargado de almacén</td>
</tr>
<tr>
<td>Duración</td>
<td>01 día</td>
</tr>
<tr>
<td>Recursos</td>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td></td>
<td>2. Registro de inventarios</td>
</tr>
<tr>
<td>Objetivo General</td>
<td>Calcular el nivel de stock disponible en almacén de productos</td>
</tr>
<tr>
<td>Costos estimados</td>
<td>S/. 80.04</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
<td>Realizar un check list en inventarios de productos y materiales</td>
</tr>
<tr>
<td></td>
<td>Ingresar data a hoja de cálculo Excel</td>
</tr>
<tr>
<td></td>
<td>Se sugiere elaborar un formato sencillo para el registro de inventarios que será utilizado por el encargado de almacén.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 10: Ficha de Actividad N° 05

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Establecer parámetros para hoja de requerimientos de producción</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>09 de Junio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>Wilfredo Salinas - Responsable del proyecto</td>
</tr>
<tr>
<td>Cristian Andrade - Responsable del proyecto</td>
</tr>
<tr>
<td>Guillermo Zúñiga - Iniciador del proyecto</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>01 día</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Establecer parámetros que serán incluidos en la hoja de requerimientos</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 89.04</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Identificar aspectos clave para formato de hoja de requerimientos</td>
</tr>
<tr>
<td>- Validar con maestro de operaciones</td>
</tr>
<tr>
<td>- Informar al ejecutor de la hoja de requerimientos</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
FICHA DE ACTIVIDAD N° 06

<table>
<thead>
<tr>
<th>Nombre de la actividad</th>
<th>Establecer indicadores de producción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha de ejecución</td>
<td>09 de Junio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
<td></td>
</tr>
<tr>
<td>Wilfredo Salinas</td>
<td>Responsable del proyecto</td>
</tr>
<tr>
<td>Cristian Andrade</td>
<td>Responsable del proyecto</td>
</tr>
<tr>
<td>Luis Huisa</td>
<td>Maestro de operaciones</td>
</tr>
<tr>
<td>Roberto Angulo</td>
<td>Dueño de la empresa</td>
</tr>
<tr>
<td>Duración</td>
<td>03 días</td>
</tr>
<tr>
<td>Recursos</td>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>Objetivo General</td>
<td>Identificar los indicadores que contribuirán a controlar la producción</td>
</tr>
<tr>
<td>Costos estimados</td>
<td>S/. 90.12</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
<td></td>
</tr>
<tr>
<td>- Identificar necesidades para el control de producción</td>
<td></td>
</tr>
<tr>
<td>- Identificar indicadores a partir de los datos manejados</td>
<td></td>
</tr>
<tr>
<td>- Establecer indicadores clave para el control</td>
<td></td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
<td>Se sugiere utilizar indicadores sencillos, de fácil toma de decisiones. Evitar aplicar fórmulas y estadística compleja.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 12: Ficha de Actividad N° 07

<table>
<thead>
<tr>
<th>NOMBRE DE LA ACTIVIDAD N° 07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Plan de recursos productivos</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>10 de Junio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>Wilfredo Salinas - Responsable del proyecto</td>
</tr>
<tr>
<td>Cristian Andrade - Responsable del proyecto</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>01 día</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Obtener la herramienta de cálculo para identificar los recursos necesarios para la producción</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 53.36</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Recoger data registrada</td>
</tr>
<tr>
<td>- Diseñar formato sencillo y amigable visualmente para el ejecutor</td>
</tr>
<tr>
<td>- Ingresar datos a hoja de cálculo</td>
</tr>
<tr>
<td>- Validar con maestro de operaciones</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
<tr>
<td>De ser posible, se sugiere optimizar la herramienta con el uso de macros.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 08</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
<td>Diseñar hoja de cálculo para Inventarios</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
<td>10 de Junio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
<td>Wilfredo Salinas - Responsable del proyecto Cristian Andrade - Responsable del proyecto</td>
</tr>
<tr>
<td>Duración</td>
<td>01 día</td>
</tr>
<tr>
<td>Recursos</td>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>Objetivo General</td>
<td>Obtener la herramienta de cálculo para identificar la disponibilidad de inventarios</td>
</tr>
<tr>
<td>Costos estimados</td>
<td>S/. 53.36</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
<td>Recoger data registrada - Diseñar formato sencillo y amigable visualmente para el ejecutor - Ingresar datos a la hoja de cálculo - Validar con maestro de operaciones</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
<td>De ser posible, se sugiere optimizar la herramienta con el uso de macros.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 14: Ficha de Actividad N° 09

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Hoja de requerimientos</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>09 de Junio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>Wilfredo Salinas - Responsable del proyecto</td>
</tr>
<tr>
<td>Cristian Andrade - Responsable del proyecto</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>03 días</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Obtener la herramienta de cálculo para generar hoja de requerimientos</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 53.36</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>Recoger data registrada</td>
</tr>
<tr>
<td>Diseñar formato sencillo y amigable visualmente para el ejecutor</td>
</tr>
<tr>
<td>Ingresar datos a hoja de cálculo</td>
</tr>
<tr>
<td>Imprimir hoja de requerimientos</td>
</tr>
<tr>
<td>Validar con maestro de operaciones</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
<tr>
<td>De ser posible, se sugiere optimizar la herramienta con el uso de macros.</td>
</tr>
<tr>
<td>Fuente: Elaboración propia</td>
</tr>
</tbody>
</table>
Anexo 15: Ficha de Actividad N° 10

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Diseñar hoja de cálculo para Indicadores</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>10 de Junio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>1. Cristian Andrade - Responsable del Proyecto</td>
</tr>
<tr>
<td>2. Wilfredo Salinas - Responsable del Proyecto</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>02 días</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>2. Grupo del proyecto de implementación</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Crear el formato para hallar los resultados de los indicadores</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 80.04</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Vincular resultados obtenidos en otras hojas de cálculo</td>
</tr>
<tr>
<td>- Diseñar formato sencillo y amigable visualmente para la interpretación</td>
</tr>
<tr>
<td>- Validar con el gerente general y maestro de operaciones al implementarse</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
<tr>
<td>El formato de indicadores debe buscar ser lo más sencillo posible, para que el personal de la empresa lo adecue dentro sus funciones de trabajo sin tener problemas relacionados a que no entiende el contenido.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 16: Ficha de Actividad N° 11

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Capacitar al personal sobre el flujo del proceso</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>07 de Julio del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>1. Cristian Andrade - Responsable del Proyecto</td>
</tr>
<tr>
<td>2. Wilfredo Salinas - Responsable del Proyecto</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>02 días</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. MS Microsoft Power Point 2013</td>
</tr>
<tr>
<td>2. Grupo del proyecto del proyecto de implementación</td>
</tr>
<tr>
<td>3. 5 personas de la empresa</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Preparar y enseñar al personal de la empresa sobre el proceso de PCP</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 302.84</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Brindar una introducción del tema de PCP al personal de la empresa</td>
</tr>
<tr>
<td>- Presentar el tema a los asistentes</td>
</tr>
<tr>
<td>- Exponer las diapositivas creadas</td>
</tr>
<tr>
<td>- Utilizar términos sencillos</td>
</tr>
<tr>
<td>- Realizar preguntas a los asistentes</td>
</tr>
<tr>
<td>- Responder preguntas de los asistentes</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
<tr>
<td>Se recomienda que la capacitación sea puntual y aclare las dudas que se puedan presentar entre los asistentes.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
FICHA DE ACTIVIDAD N° 12

<table>
<thead>
<tr>
<th>Nombre de la actividad</th>
<th>Capacitar al personal sobre el manejo del Excel de Operaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha de ejecución</td>
<td>07 de Julio del 2016</td>
</tr>
</tbody>
</table>
| Responsables involucrados | 1. Cristian Andrade - Responsable del Proyecto
2. Wilfredo Salinas - Responsable del Proyecto |
| Duración | 02 días |
| Recursos | 1. MS Microsoft Power Point 2013
2. Grupo del proyecto de implementación
3. 5 personas de la empresa |
| Objetivo General | Enseñar al personal de la empresa acerca del uso de los formatos en Excel |
| Costos estimados | S/. 302.84 |
| Descripción de la actividad | - Brindar los pasos a seguir para Utilizar la hoja de Excel
- Presentar las plantillas creadas a los asistentes
- Exponer las diapositivas creadas
- Utilizar términos sencillos
- Realizar preguntas a los asistentes
- responder preguntas de los asistentes |
| Observaciones y recomendaciones | Se recomienda que esta capacitación sea lo más detallada posible, ya que se enseñará al personal a manejar las hojas de cálculo. Por ello, al finalizar la capacitación los capacitadores deberán realizar preguntas al personal para confirmar que todo haya quedado claro. |

Fuente: Elaboración propia
FICHA DE ACTIVIDAD N° 13

Nombre de la actividad
Ejecutar proceso propuesto

Fecha de ejecución
18 de Julio del 2016

Responsables involucrados
1. Cristian Andrade - Responsable del Proyecto
2. Wilfredo Salinas - Responsable del Proyecto

Duración
33 días

Recursos
1. MS Microsoft Excel 2013
2. 4 personas de la empresa
3. Grupo del proyecto de implementación

Objetivo General
Poner en marcha una prueba del proceso de programación y control de producción

Costos estimados
S/. 2662.52

Descripción de la actividad
- Dirigirse a la empresa
- Poner en marcha el piloto del proceso propuesto
- Ejecutar el proceso en conjunto con el personal de la empresa
- Completar las plantillas en Excel
- Obtener un resultado del Excel
- Indicar la producción a realizar

Observaciones y recomendaciones
Es importante la presencia del grupo de investigación en esta etapa, con la finalidad de identificar las acciones de mejora para ajustar el modelo, y asimismo observar el comportamiento del personal respecto al proceso.

Fuente: Elaboración propia
Anexo 19: Ficha de Actividad N° 14

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>1. Cristian Andrade - Responsable del Proyecto</td>
</tr>
<tr>
<td>2. Wilfredo Salinas - Responsable del Proyecto</td>
</tr>
<tr>
<td>3. Roberto Angulo - Dueño de la empresa</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. Cuadernillos</td>
</tr>
<tr>
<td>2. Grupo del proyecto de implementación</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Analizar hasta el mínimo detalle</td>
</tr>
<tr>
<td>- Anotar cualquier observación</td>
</tr>
<tr>
<td>- Examinar lo observado</td>
</tr>
<tr>
<td>- Atender al personal</td>
</tr>
<tr>
<td>- Apoyar al personal ante alguna duda</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 20: Ficha de Actividad N° 15

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Realizar control y seguimiento al personal</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>18 de Julio</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>1. Cristian Andrade - Responsable del Proyecto</td>
</tr>
<tr>
<td>2. Wilfredo Salinas - Responsable del Proyecto</td>
</tr>
<tr>
<td>3. Roberto Angulo - Dueño de la empresa</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>33 días</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. 2 Cuadernillos</td>
</tr>
<tr>
<td>2. Grupo del proyecto de implementación</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Evaluar el comportamiento del personal respecto al proceso propuesto</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 373.52</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Analizar el comportamiento del personal</td>
</tr>
<tr>
<td>- Anotar cualquier observación</td>
</tr>
<tr>
<td>- Realizar consultas al personal</td>
</tr>
<tr>
<td>- Examinar lo observado</td>
</tr>
<tr>
<td>- Atender al personal</td>
</tr>
<tr>
<td>- Apoyar al personal ante alguna duda</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
<tr>
<td>Es importante tomar en cuenta las opiniones de los trabajadores, ya que por medio de estos se sabe si el diseño del proceso resulta ser muy complejo o es adecuado para el personal que labora en la empresa.</td>
</tr>
<tr>
<td>Fuente: Elaboración propia</td>
</tr>
</tbody>
</table>
Anexo 21: Ficha de Actividad N° 16

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Medir resultados a través de los indicadores</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>20 de Agosto del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>1. Cristian Andrade - Responsable del Proyecto</td>
</tr>
<tr>
<td>2. Wilfredo Salinas - Responsable del Proyecto</td>
</tr>
<tr>
<td>3. Roberto Angulo - Dueño de la empresa</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>05 días</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>2. Grupo del proyecto de implementación</td>
</tr>
<tr>
<td>3. Trabajador de la empresa</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Evaluar el desempeño obtenido con el proceso implementado</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 200.10</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Utilizar la plantilla de indicadores</td>
</tr>
<tr>
<td>- Completar los datos de la plantilla</td>
</tr>
<tr>
<td>- Medir resultados obtenidos</td>
</tr>
<tr>
<td>- Reunirse con el personal involucrado</td>
</tr>
<tr>
<td>Observaciones y recomendaciones</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
FICHA DE ACTIVIDAD N° 17

Nombre de la actividad
Establecer acciones de mejora

Fecha de ejecución
25 de Agosto del 2016

Responsables involucrados
1. Cristian Andrade - Responsable del Proyecto
2. Wilfredo Salinas - Responsable del Proyecto

Duración
02 días

Recursos
1. MS Microsoft Excel 2013
2. Grupo del proyecto de implementación

Objetivo General
Establecer puntos de mejora para ajustar el modelo del proceso

Costos estimados
S/. 106.72

Descripción de la actividad
- Identificar puntos débiles
- Establecer acciones de mejora
- Ajustar el proceso propuesto
- Modificar las plantillas en Excel

Observaciones y recomendaciones

Fuente: Elaboración propia
Anexo 23: Ficha de Actividad N° 18

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Ejecutar el modelo ajustado</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>29 de Agosto del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
</tbody>
</table>
| 1. Cristian Andrade - Responsable del Proyecto
2. Wilfredo Salinas - Responsable del Proyecto
3. Roberto Angulo - Dueño de la empresa
4. Luis Huisa – Maestro de Operaciones |
| **Duración** |
| 96 días |
| **Recursos** |
| 1. MS Microsoft Excel 2013
2. Trabajador de la empresa |
| **Objetivo General** |
| Realizar la puesta en marcha del proceso de PCP |
| **Costos estimados** |
| S/. 747.04 |
| **Descripción de la actividad** |
| - Dirigirse a la empresa
- Poner en marcha el proceso ajustado
- La empresa se encarga de la ejecución
- Realizar visitas a la empresa |
| **Observaciones y recomendaciones** |
| La ejecución del modelo estará a cargo de la empresa, ya que como grupo de investigación buscamos evaluar el desempeño de los trabajadores con el proceso implementado, pues ya se realizó toda la formación y pruebas planificadas. |

Fuente: Elaboración propia
Anexo 24: Ficha de Actividad N° 19

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD N° 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 25: Ficha de Actividad Nº 20

<table>
<thead>
<tr>
<th>FICHA DE ACTIVIDAD Nº 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de la actividad</td>
</tr>
<tr>
<td>Evaluar impactos</td>
</tr>
<tr>
<td>Fecha de ejecución</td>
</tr>
<tr>
<td>03 de Septiembre del 2016</td>
</tr>
<tr>
<td>Responsables involucrados</td>
</tr>
<tr>
<td>1. Cristian Andrade - Responsable del Proyecto</td>
</tr>
<tr>
<td>2. Wilfredo Salinas - Responsable del Proyecto</td>
</tr>
<tr>
<td>Duración</td>
</tr>
<tr>
<td>84 días</td>
</tr>
<tr>
<td>Recursos</td>
</tr>
<tr>
<td>1. MS Microsoft Excel 2013</td>
</tr>
<tr>
<td>2. MS Microsoft Word 2013</td>
</tr>
<tr>
<td>3. Grupo del proyecto de implementación</td>
</tr>
<tr>
<td>Objetivo General</td>
</tr>
<tr>
<td>Evaluar los impactos ambientales, económicos y sociales de la implementación</td>
</tr>
<tr>
<td>Costos estimados</td>
</tr>
<tr>
<td>S/. 672.34</td>
</tr>
<tr>
<td>Descripción de la actividad</td>
</tr>
<tr>
<td>- Analizar los factores: ambientales, económicos y sociales</td>
</tr>
<tr>
<td>- Identificar impactos ambientales</td>
</tr>
<tr>
<td>- Identificar impactos económicos</td>
</tr>
<tr>
<td>- Identificar impactos sociales</td>
</tr>
<tr>
<td>- Redactar detalladamente los impactos</td>
</tr>
</tbody>
</table>

Observaciones y recomendaciones

Fuente: Elaboración propia
Anexo 26: Presentación de Capacitación N° 01

Fuente: Grupo de proyecto de Tesis

Anexo 27: Presentación de Capacitación N° 02

Fuente: Grupo de proyecto de Tesis
Anexo 28: Códigos asignados a las máquinas del área de Operaciones

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>NOMBRE</th>
<th>CÓDIGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIZALLAS</td>
<td>CIZALLA 1</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>CIZALLA 2</td>
<td>C2</td>
</tr>
<tr>
<td>TRONZADORA</td>
<td>TRONZADORA</td>
<td>TZ</td>
</tr>
<tr>
<td>ESMERIL</td>
<td>ESMERIL DE BANCO</td>
<td>EB</td>
</tr>
<tr>
<td>PLEGADORAS</td>
<td>PLEGADORA 1</td>
<td>P1</td>
</tr>
<tr>
<td></td>
<td>PLEGADORA 2</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td>PLEGADORA 3</td>
<td>P3</td>
</tr>
<tr>
<td></td>
<td>PLEGADORA 4</td>
<td>P4</td>
</tr>
<tr>
<td></td>
<td>PLEGADORA MANUAL</td>
<td>P5</td>
</tr>
<tr>
<td>ROLADORAS</td>
<td>ROLADORA ELECTRICA</td>
<td>RE</td>
</tr>
<tr>
<td></td>
<td>ROLADORA MANUAL</td>
<td>RM</td>
</tr>
<tr>
<td></td>
<td>ROLADORA DE TUBO</td>
<td>RT</td>
</tr>
<tr>
<td>TALADROS</td>
<td>TALADRO DE MESA 1</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td>TALADRO DE MESA 2</td>
<td>T2</td>
</tr>
<tr>
<td>PUNZONADORA</td>
<td>PUNZONADORA</td>
<td>PZ</td>
</tr>
<tr>
<td>ESTACIÓN DE SOLDADO</td>
<td>SOLDADURA 1</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>SOLDADURA 2</td>
<td>S2</td>
</tr>
<tr>
<td>OXICORTE</td>
<td>OXICORTE</td>
<td>OX</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Fuente: Fierrosol S.A.C.
Anexo 29: Ejecución del proceso propuesto
Anexo 30: Control y seguimiento al proceso y personal
Anexo 31: Capacitación al personal
Fuente: Grupo de proyecto de Tesis

Fuente: Grupo de proyecto de Tesis
Anexo 32: Formato de encuesta de Capacitación

<table>
<thead>
<tr>
<th>Aspectos a Evaluar</th>
<th>DE ACUERDO</th>
<th>MEDIANAMENTE DE ACUERDO</th>
<th>EN DESACUERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ¿Cree usted que la información utilizada fue clara y precisa?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. ¿Cree usted que los términos utilizados durante la exposición eran de fácil entendimiento?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ¿Cree usted que las instrucciones dadas fueron de utilidad para comprender el proceso?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. ¿Cree usted que el material mostrado fue útil y sencillo de comprender?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ¿Cree usted que la capacitación interrumpió sus labores?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposición</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. ¿Cree usted que la capacitación duro más tiempo del necesario?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. ¿Considera que los expositores aclararon las dudas que se presentaron?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. ¿Cree usted que los expositores se prepararon para la capacitación?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. ¿Cree usted que los expositores tuvieron paciencia al preparar al personal?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. En general, ¿Considera que la capacitación fue necesaria?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrucciones: Para cada pregunta, marcar con una X en el recuadro correspondiente a la respuesta que le otorga.
Anexo 33: Formato de Seguimiento N° 01

CONTROL DE OPERACIONES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 34: Formato de Seguimiento N° 02

<table>
<thead>
<tr>
<th>No. Pedido</th>
<th>Nombre</th>
<th>Servicio</th>
<th>Incidencia</th>
<th>Acción Tomada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 35: Entrevista de seguimiento número 1 a los interesados en el proyecto

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - ROBERTO ANGULO</td>
</tr>
</tbody>
</table>

1. ¿El proyecto implementado está cumpliendo con sus expectativas?

Sí, las está cumpliendo ya que las ventas perdidas se han visto reducidas.

2. ¿Qué cree que debería mejorar?

Debería mejorar la relación que existe entre el área de compras y manufactura, ya que constantemente se discute por la cantidad y el tiempo de entrega que puede afectar al otro.

3. ¿Qué espera en adelante con el modelo implementado?

Espero que el modelo implementado siga su marcha y las ventas perdidas se minimicen a cero, y las demás familias de productos sigan sus pasos.

Fuente: Elaboración propia
Anexo 36: Entrevista de seguimiento número 2 a los interesados en el proyecto

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - GUILLERMO ZÚÑIGA</td>
</tr>
</tbody>
</table>

1. ¿El proyecto implementado está cumpliendo con sus expectativas?

Sí las estás cumpliendo. Hemos visto una mejora en las ventas del mes de Julio y Agosto.

2. ¿Qué cree que debería mejorar?

Debe mejorar la supervisión del Maestro de Operaciones a los operadores, ya que muchas veces estos se retrasan más de lo habitual en las tareas asignadas.

3. ¿Qué espera en adelante con el modelo implementado?

Que los beneficios se den en todas las familias de productos.

Fuente: Elaboración propia
Anexo 37: Entrevista de seguimiento número 3 a los interesados en el proyecto

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - MAXIMILIANA GUZMAN</td>
</tr>
</tbody>
</table>

1. ¿El proyecto implementado está cumpliendo con sus expectativas?

Sí, las órdenes de compra llegan más ordenadamente y con suficiente tiempo para emitir la compra y conversar con los proveedores.

2. ¿Qué cree que debería mejorar?

El establecimiento de inventarios mínimos que puedan contrarrestar algún eventual retraso por parte del proveedor.

3. ¿Qué espera en adelante con el modelo implementado?

Que se homogenicen todas los requerimientos de manufactura en cuanto a las compras que debo协调 con los proveedores y así evitar retrasos o pedidos cancelados por desabastecimiento.

Fuente: Elaboración propia
Anexo 38: Entrevista de seguimiento número 4 a los interesados en el proyecto

<table>
<thead>
<tr>
<th>ENTREVISTA NO. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERESADO - LUIS HUISA</td>
</tr>
</tbody>
</table>

1. ¿El proyecto implementado está cumpliendo con sus expectativas?
Sí, con el modelo y herramienta dada he aprendido a programar ordenadamente a los operadores y a las máquinas disponibles. También estoy aprendiendo a proyectar los tiempos que implican los siguientes pedidos por atender y de esta manera el área se está organizando bastante en comparación a otros meses anteriores.

2. ¿Qué cree que debería mejorar?
Debo mejorar los tiempos programados y plasmarlos en la realidad, ya que muchas veces no me doy abasto para un control más riguroso con los operadores y a veces hay tiempos ociosos.

3. ¿Qué espera en adelante con el modelo implementado?
Que se cumpla la fecha programada de entrega con el cliente y no se hayan más retrasos en esta. También espero que el modelo sirva como ejemplo para otras operaciones de la empresa y puedan contribuir a su mejora.

Fuente: Elaboración propia
Anexo 39: Entrevista de seguimiento número 5 a los interesados en el proyecto

| ENTREVISTA NO. 5 |
| INTERESADO - ALFONSO PIZARRO |

1. ¿El proyecto implementado está cumpliendo con sus expectativas?

Sí, las planchas están llegando en el orden y tamaño coordinados previamente con manufactura y el cliente. Me permite llevar un mejor control en el almacén.

2. ¿Qué cree que debería mejorar?

Debería mejorar la forma en la entrega de las planchas que me pueda facilitar ubicarlas según tipo de espesor.

3. ¿Qué espera en adelante con el modelo implementado?

Espero que se mantenga el orden que actualmente se está dando, y poder llevarlo a cabo en otros productos.

Fuente: Elaboración propia
Anexo 40: Procedimiento de planificación, programación y control de la producción

<table>
<thead>
<tr>
<th>FIERROSOL S.A.C.</th>
<th>SISTEMA DE PLANIFICACIÓN, PROGRAMACIÓN Y CONTROL DE LA PRODUCCIÓN</th>
<th>CODIGO: PPC-PL</th>
<th>VERSION: 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>TÍTULO:</td>
<td>PLANIFICACIÓN, PROGRAMACIÓN Y CONTROL DE PRODUCCIÓN</td>
<td>PÁGINA: 1 de 4</td>
<td></td>
</tr>
</tbody>
</table>

OBJETIVO

El presente procedimiento establece las acciones para llevar a cabo la planificación, programación y control de producción en la empresa FIERROSOL S.A.C.

RESPONSABILIDAD Y ALCANCE

El presente procedimiento es administrado por el responsable del proceso de planificación, programación y control, y el maestro de producción. En este documento se incluyen los pasos que a seguir por el responsable del proceso de PCP y el maestro de producción en sus determinadas tareas, desde que se recibe un nuevo pedido hasta determinar la fecha de entrega y realizar la producción de este, con el objetivo de llevar a cabo la programación y el control de la producción para cumplir con la entrega del pedido del cliente.

DOCUMENTOS A CONSULTAR

Hoja de registro de pedidos

Hoja de programación de máquinas

Hoja de programación de mano de obra

Orden de producción
DEFINICIONES

RPCP: Responsable del proceso de planificación, programación y control de producción

MP: Maestro de Producción

AC: Encargada de atención al cliente

CONDICIONES BÁSICAS

Los pedidos deben estar siempre ingresados por Atención al Cliente al archivo compartido.

Los documentos a consultar deben estar siempre revisados y disponibles para el área de Operaciones.

Las órdenes de producción deben ser siempre firmadas por el Maestro de Producción como evidencia de que el trabajo se dio por concluido.
DESARROLLO DEL PROCEDIMIENTO

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>RESPONSABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGRESO DEL PEDIDO:</td>
<td></td>
</tr>
<tr>
<td>Recibir y registrar solicitud del cliente.</td>
<td></td>
</tr>
<tr>
<td>Confirmar disponibilidad de producto en almacén.</td>
<td>AC</td>
</tr>
<tr>
<td>Si el producto está disponible, solicitar despacho; de lo contrario, generar orden de pedido.</td>
<td></td>
</tr>
<tr>
<td>PLANIFICACIÓN DE LA PRODUCCIÓN:</td>
<td></td>
</tr>
<tr>
<td>Recibir orden de pedido</td>
<td></td>
</tr>
<tr>
<td>Fijar fecha de entrega de producto, considerando disponibilidad y compras programadas.</td>
<td>RPCP</td>
</tr>
<tr>
<td>Enviar información a Atención al Cliente</td>
<td></td>
</tr>
<tr>
<td>Solicitar confirmación del cliente en la fecha dispuesta por el Responsable de PCP.</td>
<td>AC</td>
</tr>
<tr>
<td>Dar de alta o de baja la solicitud de acuerdo respuesta del cliente y notificarlo al Responsable de PCP.</td>
<td></td>
</tr>
</tbody>
</table>
PROGRAMACIÓN DE LA PRODUCCIÓN:

Revisar recursos de producción disponibles y programar la producción utilizando los formatos creados para el proceso en MS EXCEL.	RPCP
Levantar la orden de fabricación y enviarla al área de Operaciones.	
Revisar orden fabricación y autorizarla de estar alineada al escenario actual de producción	MP

CONTROL DE LA PRODUCCIÓN:

| Controlar los lotes programados según la orden. | MP |
| Una vez concluida la producción, firmar y solicitar envío de producto terminado a almacén. | |

REGISTROS

Registro de pedidos

Orden de producción firmada

ANEXOS

No existen anexos
Anexo 41: Ecuaciones utilizadas

Ecuación 1: Pronóstico de suavización exponencial

\[F_t = F_{t-1} + \alpha(A_{t-1} - F_{t-1}) \]

Donde:

- \(F_t \) = El pronóstico suavizado exponencialmente para el periodo \(t \)
- \(F_{t-1} \) = El pronóstico suavizado exponencialmente para el periodo anterior
- \(A_{t-1} \) = La demanda real para el periodo anterior
- \(\alpha \) = Constante de suavización

Ecuación 2: Pronóstico incluyendo la tendencia

\[FIT_t = F_t + T_t \]

\[F_t = FIT_{t-1} + \alpha(A_{t-1} - FIT_{t-1}) \]

\[T_t = T_{t-1} + \delta(F_t - FIT_{t-1}) \]

Donde:

- \(F_t \) = El pronóstico suavizado exponencialmente para el periodo \(t \)
- \(T_t \) = La tendencia suavizada exponencialmente para el periodo \(t \)
- \(FIT_t \) = El pronóstico incluida la tendencia para el periodo \(t \)
FIT\textsubscript{t-1} = El pronóstico incluida la tendencia hecha para el periodo anterior

A\textsubscript{t-1} = La demanda real para el periodo anterior

\(\alpha \) = Constante de suavización

\(\delta \) = Constante de suavización

Ecuación 3: Error promedio en los pronósticos

\[
MAD = \frac{\sum_{t=1}^{n} |A_t - F_t|}{n}
\]

1MAD = 0.8 desviaciones estándar

Donde:

\(t \) = Número del periodo

\(A \) = Demanda real para el periodo

\(F \) = Demanda pronosticada para el periodo

\(n \) = Número total de periodos
Ecuación 4: Stock de seguridad

\[SS = z \sigma_L \]

\[\sigma_d = \sqrt{\frac{\sum_{i=1}^{n}(d_i - \bar{d})^2}{n}} \]

\[\sigma_L = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_t^2} \]

Donde:

\(d_i = \text{Demanda del día} \ i \)

\(\bar{d} = \text{Demanda promedio en el periodo} \ n \)

\(\sigma_d = \text{Desviación estándar de la demanda diaria} \)

\(\sigma_L = \text{Desviación estándar para el periodo de} \ n \ \text{días} \)

Ecuación 5: Demanda promedio en un determinado periodo

\[\bar{d} = \frac{1}{n} \times \sum_{t=1}^{t=n} d_t \]

Donde:

\(n = \text{Número de periodos} \)

\(d_t = \text{Demanda real} \)

\(\bar{d} = \text{Demanda promedio} \)
Ecuación 6: Varianza estimada para un periodo determinado

\[Est. \, var \, D = \frac{1}{n} \sum_{t=1}^{t=n} d_t^2 - \bar{d}^2 \]

Donde:

\(n = \text{Número de periodos} \)
\(d_t = \text{Demanda real} \)

Ecuación 7: Coeficiente de variabilidad

\[VC = \frac{Est. \, var \, D}{\bar{d}^2} \]

Donde:

\(\bar{d} = \text{Demanda promedio} \)
\(Est. \, var \, D = \text{Varianza estimada} \)