CAPACIDAD ANTIOXIDANTE IN VITRO DE EXTRACTOS FENÓLICOS LIBRES Y LIGADOS EN HARINAS DE QUINUA (Chenopodium quinoa), KIWICHA (Amaranthus caudatus) Y KAÑIWA (Chenopodium pallidicaule)

TESIS
Para optar el título profesional de:
LICENCIADA EN NUTRICIÓN Y DIETÉTICA

AUTOR
Chanamé Rodríguez, Cinthya Maritza (0000-0001-9759-5677)
Cruz Reyes, Miriam Gisela (0000-0003-3520-8541)

ASESORES DE TESIS
PhD. Ramos Escudero, Fernando (0000-0002-6907-3166)
PhD. Liria Domínguez, María Reyna (0000-0002-5637-1519)

Lima, 11 de Julio de 2017
DEDICATORIA

A Dios quien supo guiarme dándome mucha fuerza y perseverancia y haberme permitido llegar a culminar mi etapa profesional. A mi familia quienes supieron apoyarme en todo momento en mi formación académica y especialmente a mis padres por todo su apoyo, dedicación, esfuerzo, entrega y amor. A mi amiga Gisela, porque juntas pudimos lograr finalizar este gran trabajo a pesar de las dificultades.

Cinthya Maritza Chanamé Rodríguez

A Dios, por haberme dado fortaleza para poder superar todos los obstáculos y dificultades a lo largo de este proceso. A mis padres, pilar fundamental de mi vida, que sin su apoyo incondicional no hubiera podido llegar hasta esta etapa. A mis hermanos, por su gran ejemplo, consejos y preocupación constante. A mis abuelos, que desde el cielo siempre me guían y ayudan en todo, este logro es también de ustedes, por su gran ejemplo.

A mi amiga Cinthya, porque juntas somos un gran equipo y pudimos lograr esta meta tan importante.

Miriam Gisela Cruz Reyes
AGRADECIMIENTOS

Al finalizar este arduo trabajo queremos agradecer de manera muy especial a todos los que nos apoyaron en la realización del mismo.

A Quim. Víctor Hugo Ibañez Meza, Tec. José Quiroz Marquina y Sr. José Calderón Castro por su tiempo, cooperación y dedicación a este trabajo, brindándonos los medios necesarios para la culminación del análisis. Así mismo queremos agradecer de manera especial a nuestros asesores María Reyna Liria Domínguez y Fernando Ramos Escudero por todo el apoyo brindado para la culminación de este trabajo.
Índice General

I. MARCO TEÓRICO .. 1

II. OBJETIVO DEL ESTUDIO .. 5
 2.1 OBJETIVO GENERAL .. 5
 2.2 OBJETIVOS ESPECÍFICOS ... 5

III. MATERIALES Y MÉTODOS .. 6
 3.1 LUGAR DE ESTUDIO .. 6
 3.2 MATERIALES Y EQUIPOS .. 6
 3.2.1 Muestras .. 6
 3.2.2 Reactivos ... 9
 3.3 MÉTODOS ... 9
 3.3.1 Extracción de la muestra .. 9
 3.3.2 Capacidad antioxidante en fase hidrofílica .. 11
 3.3.3 Índice compuesto de potencia antioxidante .. 17
 3.3.4 Análisis estadístico ... 17

IV. RESULTADOS .. 19
 4.1 CAPACIDAD ANTIOXIDANTE POR MÉTODO DPPH ... 19
 4.2 CAPACIDAD ANTIOXIDANTE POR MÉTODO ABTS ... 21
 4.3 CAPACIDAD ANTIOXIDANTE POR MÉTODO FRAP ... 23
 4.4 ÍNDICE COMPUESTO DE POTENCIA ANTIOXIDANTE ... 25

V. DISCUSIÓN .. 28
 5.1 LIMITACIONES Y FORTALEZAS .. 34

 VI. CONCLUSIONES .. 36

 VII. RECOMENDACIONES ... 37

VIII. GLOSARIO .. 39

IX. REFERENCIAS BIBLIOGRÁFICAS .. 41

X. ANEXO .. 48
Índice de Tablas

Tabla 1. Caracterización y descripción de las muestras ... 7
Anexo 1. Capacidad antioxidante 2,2-difenil-2-picrilhidrazil (DPPH) en harinas de kaniwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción.. 48
Anexo 2. Capacidad antioxidante ácido 2,2’-azino- bis-(3- etilbenzotiazolina)-6-sulfónico (ABTS) en harinas de kaniwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción... 48
Anexo 3. Capacidad antioxidante FRAP (Poder antioxidante reductor del hierro) en harinas de kaniwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción... 49
Anexo 4. Índice compuesto de capacidad antioxidante en harinas de quinua, kiwicha y kaniwa... 49
Índice de Figuras

Fig.1: Flujograma de muestra y muestreo ... 9
Fig. 2: Flujograma de sistema de extracción de la muestra.. 10
Fig 3: Figura en la que se muestra la reacción del radical 2,2-difenil- 2-picrilhidrazil (DPPH) con molécula antioxidante (Ramos-Escudero, 2010) .. 11
Fig. 4: Figura en la que se muestra la curva de calibración del radical 2,2-difenil- 2-pircrilhidrazil (DPPH)... 12
Fig. 5: Figura en la que se muestra la reacción del radical Ácido 2, 2´-azino- bis-(3-etilbenzotiazolina)-6- sulfónico (ABTS) en presencia de un componente antioxidante (Ramos-Escudero, 2010). ... 14
Fig. 6: Figura en la que se muestra la curva de calibración del radical Ácido 2, 2´-azino-bis-(3-etilbenzotiazolina)-6- sulfónico (ABTS) ... 15
Fig. 7: Figura en la que se muestra la reducción de [Fe (III) (TPTZ)2] 3+ en presencia de antioxidante (Ramos-Escudero, 2010). ... 16
Fig. 8: Figura en la que se muestra la curva de calibración del método Poder antioxidante reductor del hierro (FRAP) ... 16
Fig. 9: Figura en la que se muestra la capacidad antioxidante por el método 2,2-difenil-2-picrilhidrazil (DPPH) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción... 20
Fig. 10: Figura en la que se muestra la capacidad antioxidante por el método ácido2,2´-azino- bis-(3-etilbenzotiazolina)-6- sulfónico (ABTS) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción. (TE: Trolox Equivalente. Los resultados se muestran en medianas y rango intercuartílico. Letras diferentes indican diferencia significativa con un p-value < 0,05, mientras que letras iguales indica que no hay diferencia significativa.) 22
Fig. 11: Figura en la que se muestra la capacidad antioxidante por el método FRAP (Poder antioxidante reductor del hierro) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción. (TE: Trolox Equivalente. Los resultados se muestran en medianas y rango intercuartílico. Letras diferentes indican diferencia significativa con un p-value < 0,05, mientras que letras iguales indica que no hay diferencia significativa.) 25
Fig. 12: Índice compuesto de actividad antioxidante en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción. (%: Porcentaje. Los resultados se muestran en medianas y rango intercuartílico. Letras diferentes indican diferencia significativa con un p-value < 0.05, mientras que letras iguales indica que no hay diferencia significativa.)
RESUMEN

Los antioxidantes protegen a las células del daño oxidativo, por lo que pueden tener un rol importante en la prevención de enfermedades crónicas. Los cereales andinos son alimentos oriundos del país que destacan por su valor nutricional y su capacidad antioxidante. Estos cereales pueden ser sometidos a procesos de molienda obteniendo así las harinas. El tipo de procesamiento y la forma en que se expenden al público puede afectar sus propiedades antioxidantes. **Objetivo:** Comparar la capacidad antioxidante por métodos de secuestro de radicales libres, quelación de hierro y mediante el índice compuesto de potencia antioxidante entre la harina de kañiwa, kiwicha y quinua en sus tres presentaciones: artesanal, a granel e industrial. **Metodología:** El análisis se realizó en los laboratorios de bioquímica de la Universidad Peruana de Ciencias Aplicadas (2016). Se analizó la capacidad antioxidante de las muestras de harina de kañiwa, kiwicha y quinua en sus tres presentaciones mediante los métodos DPPH, ABTS y FRAP, luego se determinó un índice compuesto de potencia antioxidante. Todas las muestras se analizaron por espectroscopía molecular y por triplicado. **Resultados:** Los resultados señalan que la capacidad antioxidante fue mayor en harina de kañiwa (DPPH: 19,20-120,41; ABTS: 30,70-320,59 y FRAP: 88,23-269,28 μmol TE/g) en sus tres tipos de extracción. Lo cual fue ratificado por el índice compuesto de capacidad antioxidante. Los extractos ácidos y alcalinos obtuvieron mayores resultados. Las presentaciones a granel e industrial mostraron una mayor capacidad antioxidante, esto no sucedió en todos los casos. **Conclusiones:** La harina de kañiwa presentó una mayor capacidad antioxidante. La hidrólisis alcalina y ácida extrajeron más compuestos antioxidantes. La presentación a granel e industrial mostró mayor capacidad antioxidante, no en todos los casos. **Palabras Claves:** Capacidad antioxidante, kañiwa, kiwicha, quinua, DPPH, ABTS, FRAP (Basado en DECS)
ABSTRACT

Antioxidants can act to protect cells from the oxidative damage, so they may play an important role in the prevention of chronic diseases. Andean cereals are foods originating from Perú that stand out for their nutritional value and antioxidant capacity. Whole grains can be subjected to grinding processes thus obtaining flours. Antioxidant capacity can be affected to the type of processing and the way it is sold to the public.

Objective: The objective of the study was to compare antioxidant capacity by free radical sequestration methods, iron chelation and the composite index of antioxidant potency between kañiwa, kiwicha and quinoa in its three presentations: artisanal, bulk and industrial. Methodology: The analysis was performed in food biochemistry laboratories at the Peruvian University of Applied Sciences (2016). The antioxidant capacity of the kañiwa, kiwicha and quinoa flour samples was analyzed in their bulk, industrial and artisanal presentations through the DPPH, ABTS and FRAP methods, after a composite index of antioxidant potency was determined. All samples were analyzed by molecular spectroscopy and replicate. Results: The antioxidant capacity was higher in kañiwa than in the samples of kiwicha and quinoa (DPPH:19.20-120.41; ABTS: 30.70-320.59 and FRAP: 88.23-269.28 μmol TE/g) in its three types of extractions. This was confirmed by the composite index of antioxidant capacity. The major results were found in the acid and alkaline extract. The bulk and industrial presentations showed greater antioxidant capacity but this does not happen in all cases.

Conclusions: The kañiwa flour had a higher antioxidant capacity. The alkaline and acid extractions presented greater antioxidant capacity. A greater antioxidant capacity was obtained by the bulk and industrial presentations.

Key words: Antioxidant capacity, kañiwa, kiwicha, quinoa, DPPH, ABTS, FRAP (Basado en MeSH)
I. MARCO TEÓRICO

Las enfermedades crónicas no transmisibles generan una gran preocupación debido a su carga de morbimortalidad (1). Según la Organización Mundial de la Salud (OMS) las enfermedades no transmisibles cobran gran cantidad de vidas alrededor del mundo, casi el 70% de las muertes producidas por año. Dentro de ellas, las enfermedades cardiovasculares, cáncer, enfermedades respiratorias y diabetes constituyen la mayor cantidad de muertes por este tipo de enfermedades (2).

La creciente preocupación por el aumento de las enfermedades crónicas ha llevado a buscar estrategias para reducirlas. Uno de los factores asociados con el desarrollo de estas enfermedades, es el referido a las prácticas de alimentación. Diversos estudios epidemiológicos indican que las enfermedades crónicas degenerativas tales como ateroesclerosis, hipercolesterolemia y diabetes mellitus pueden ser provocadas por una producción descontrolada de radicales libres, que a su vez ocasiona un desequilibrio oxidativo en el organismo (3). Esto y otros estudios han conllevado a una mayor demanda de alimentos que se asocian con funciones beneficiosas para la prevención y/o tratamiento de este tipo de enfermedades como son los antioxidantes (4).

Los antioxidantes son sustancias químicas que protegen a las células del daño oxidativo y pueden actuar retardando o inhibiendo la oxidación, al donar electrones a los radicales libres para estabilizarlos y transfor malos en moléculas débiles e inocuas (5). La capacidad antioxidante de los compuestos fenólicos está relacionada con la habilidad de estos compuestos para captar y estabilizar los radicales libres (6). Los antioxidantes pueden clasificarse de acuerdo a su origen en: endógenos y exógenos. Dentro del primero encontramos a la catalasa (CAT), superóxido dismutasa (SOD) y glutatión deshidrogenasa (GSH), que son los que actúan activando mecanismos de defensa
enzimáticos innatos que contrarrestan el daño oxidativo en el organismo (4). Dentro de los exógenos encontramos a los antioxidantes que provienen principalmente de la dieta. Estos se encuentran de manera natural en los alimentos o pueden generarse durante el tratamiento y/o enriquecimiento de los mismos, tales como la vitamina C y E, minerales, ácidos fenólicos, polifenoles, flavonoides y otros compuestos bioactivos (7). Los antioxidantes en los alimentos lo podemos encontrar: (i) en forma libre, es decir que está disponible en el alimento sin estar unido a una macromolécula, (ii) en su forma ligada, es decir que puede interactuar con otras macromoléculas dentro del alimento: unido a macromoléculas de alto peso molecular como la fibra dietaria, unido a la matriz celular por enlaces iónicos, o presentarse en ambas formas según el tipo de alimento en los que se encuentra (8). En el caso de los cereales, los antioxidantes pueden encontrarse ligados a los polisacárides de la pared celular. (8).

En los granos de cereales podemos encontrar infinidad de compuestos con función antioxidante, entre los que resaltan los compuestos fenólicos, como los ácidos fenólicos, los alquilresorcionoles, flavonoides, vitamina E, ácido hidróxicinámico, ácido ferúlico, compuestos más comunes encontrados (9).

Los cereales como la quinua, kiwicha y kañiwa, los cuales poseen un importante valor nutricional, se caracterizan por un alto contenido de carbohidratos complejos, fibra y por su composición de ácidos grasos, en especial la quinua y kañiwa que contienen ácidos grasos insaturados (10). Además de ello, contienen tocoferoles, los cuáles junto a otros compuestos fenólicos, les otorgan su gran capacidad antioxidante (11). Lo cual indica que el contenido de estos son los que promueven la capacidad antioxidante en los alimentos de origen vegetal (12,4).

El daño oxidativo no sólo altera las funciones fisiológicas de los humanos, sino que también pueden afectar a los alimentos ocasionando el deterioro de estos. Debido a ello
hoy en día la industria alimentaria añade antioxidantes sintéticos como el hidroxianisol butilado (BHA) o el hidroxitolueno butilado (BHT) que actúan reduciendo los procesos oxidativos. Sin embargo, su uso está siendo restringido por la industria debido a los efectos secundarios que podrían ocasionar: potencialmente carcinógenos, pueden producir daño hepático y otros efectos sobre la salud (13, 14). Por ello, existe una mayor tendencia en la búsqueda de fuentes naturales que contengan antioxidantes provenientes de las plantas y/o alimentos.

En el procesamiento de un alimento, se realizan cambios deliberadamente previos al consumo. Esta acción se realiza con el fin de transformarlos en alimentos más estables en el tiempo, más higiénicos, atractivos, nutritivos, fáciles y rápidos de usar, así como mejorar sus propiedades organolépticas (15). La ejecución de esta técnica de manera industrial en los alimentos puede influir de manera positiva o negativa en su capacidad antioxidante (15). Un ejemplo de este tipo de procesamiento es la harina, la cual se define como un producto elaborado a partir de granos de cereales enteros mediante un proceso de molienda, en donde se separa la parte del salvado del germen y lo restante se muelen hasta obtener un polvo fino (16).

Las harinas de cereales enteros se comercializan o se expenden en mercados o en supermercados en distintos tipos de presentaciones: a granel, artesanal sin etiquetado e industrial con etiquetado. Además, estos cereales pueden ser sometidos a procesos de refinado en donde se obtiene a través de partículas muy pequeñas quedándose principalmente con la fécula del cereal (9). Sin embargo, en este proceso de transformación (en este caso molienda) los cereales pierden nutrientes y componentes bioactivos, que se encuentran en mayor proporción en las capas más externas, como la capa de la aleurona del grano. Por lo tanto, podría disminuir o eliminar sus propiedades antioxidantes, dependiendo del nivel de refinamiento (9).
Existe mucho interés en buscar alimentos que contengan compuestos bioactivos y que puedan ayudar a neutralizar o reducir el daño oxidativo generado por estos radicales (3). Por otro lado, si bien se ha descrito que los cereales andinos son fuentes de antioxidantes, no hay mucha literatura que nos indique cómo el tipo de procesamiento y el modo en que se venden pueden alterar la composición de su capacidad antioxidante (8). Por ello, es que se decidió realizar este estudio en harinas obtenidas por distintos procesamientos. Los resultados que se obtengan en este estudio pueden contribuir a buscar estrategias para mejorar su consumo y ayudar en la prevención de enfermedades crónicas no transmisibles.
II. OBJETIVO DEL ESTUDIO

2.1 Objetivo general

Determinar la capacidad antioxidante por métodos de secuestro de radicales libres (DPPH Y ABTS), quelación de hierro (FRAP) y mediante el índice compuesto de potencia antioxidante entre la harina de kañiwa (*Chenopodium pallidicaule*), kiwicha (*Amarantus caudatus*) y quinua (*Chenopodium quinoa*) en sus tres presentaciones: artesanal, a granel e industrial.

2.2 Objetivos específicos

1. Comparar la capacidad antioxidante por el método de secuestro de radicales libres (DPPH Y ABTS) entre la harina de kañiwa (*Chenopodium pallidicaule*), kiwicha (*Amarantus caudatus*) y quinua (*Chenopodium quinoa*) en sus tres presentaciones: artesanal, a granel e industrial.

2. Comparar la capacidad antioxidante por el método de quelación de hierro (FRAP) entre la harina de kañiwa (*Chenopodium pallidicaule*), kiwicha (*Amarantus caudatus*) y quinua (*Chenopodium quinoa*) en sus tres presentaciones: artesanal, a granel e industrial.

3. Comparar la capacidad antioxidante mediante el índice compuesto de potencia antioxidante entre la harina de kañiwa (*Chenopodium pallidicaule*), kiwicha (*Amarantus caudatus*) y quinua (*Chenopodium quinoa*) en sus tres presentaciones: artesanal, a granel e industrial.
III. MATERIALES Y MÉTODOS

3.1 Lugar de estudio
El presente trabajo de investigación se realizó entre los meses de abril a Agosto 2016 en los laboratorios de bioquímica de alimentos de la facultad de Ciencias de la Salud – Campus Villa de la Universidad Peruana de Ciencias Aplicadas.

3.2 Materiales y equipos

3.2.1 Muestras
Se trabajó con muestras de tres tipos de harinas de cereales: kañiwa, kiwicha y quinua, en tres presentaciones harina artesanal, harina a granel y harina industrial. Las harinas se adquirieron empaquetadas industrialmente, a granel o en grano (éstas fueron molidas artesanalmente en el laboratorio). Las harinas en presentación industrial de kañiwa, kiwicha y quinua se obtuvieron del supermercado Tottus® del distrito de Santiago de Surco. Estas muestras fueron de diferentes marcas (kiwicha: Naturandes®, quinua: Productos Andinos® y kañiwa: Renacer®). Mientras que las harinas a granel y los granos enteros, para elaborar la harina artesanal, se adquirieron en un mercado del distrito de Surquillo.
Las harinas a granel fueron adquiridas como harinas al peso, comercializadas sin etiqueta y vendidas directamente del saco. Para el caso de las harinas industriales, se adquirieron las harinas en su presentación empaquetada en bolsas plásticas, vendida en presentación de 500g y con etiqueta (éstas fueron previamente tostadas). Finalmente, las harinas artesanales se elaboraron a partir de los granos enteros de los tres tipos de
cereales, luego se sometieron a un proceso de molienda y tamizado, para luego ser envasadas (TABLA N°1).

Tabla 1. Caracterización y descripción de las muestras

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Harina</th>
<th>Color</th>
<th>Descripción</th>
<th>Formas de preparación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kañiwa</td>
<td>Industrial</td>
<td>Marrón oscuro</td>
<td>• Adquiridas en supermercado en modo de harina. • Empaque industrial. • Previamente tostadas.</td>
<td>Bebidas, postres, pan, mazamorras, pastas, galletas, barras energéticas y guisos.</td>
</tr>
<tr>
<td>Kiwicha</td>
<td></td>
<td>Crema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinua</td>
<td></td>
<td>Perla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kañiwa</td>
<td>Artesanal</td>
<td>Marrón</td>
<td>• Adquiridas en forma de grano. • Molidas en el laboratorio por un molino manual. • Empaquetadas inmediatamente después de la molienda.</td>
<td></td>
</tr>
<tr>
<td>Kiwicha</td>
<td></td>
<td>Crema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinua</td>
<td></td>
<td>Blanco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kañiwa</td>
<td>A granel</td>
<td>Marrón claro</td>
<td>• Adquiridas en sacos abiertos en forma de harina. • Empaquetadas al momento de compra.</td>
<td></td>
</tr>
<tr>
<td>Kiwicha</td>
<td></td>
<td>Beige</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinua</td>
<td></td>
<td>Perla</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La selección de las muestras se realizó por conveniencia, en el mercado se eligió al azar un puesto, en el cual se realizó la compra tanto de la harina a granel como de los granos enteros. Para ello se tuvo en consideración que el producto no presentara signos de deterioro visual o presencia de contaminantes biológicos como gorgojos, gusanos u otros. En el caso de los supermercados, se seleccionaron las harinas que se encontraran más próximas al anaquel. Para la selección de estos productos se tomó en cuenta que el empaque estuviera en óptimas condiciones, sin signos de deterioro, que el producto no
se tratase de una mezcla de varios tipos de cereales y que no se haya adicionado algún tipo de aditivo alimentario o se haya fortificado el producto.

Las muestras fueron mantenidas durante tres meses en bolsas de polietileno con cierre hermético (Ziploc®), en un lugar seco a temperatura ambiente. Antes de los análisis, los granos comprados fueron molidos en un molino manual (harina artesanal). Estas harinas fueron tamizadas en un tamiz N°70. El análisis se llevó a cabo en los laboratorios de la Universidad Peruana de Ciencias Aplicadas (UPC) (Figura N° 1).
3.2.2 Reactivos
Todos los reactivos químicos usados en el experimento fueron obtenidos de proveedores certificados. Radical 2,2-difenil- 2-picrilhidrazil (DPPH), Acido 2,2´-azino- bis-(3-etilbenzotiazolina)-6- sulfonico (ABTS), sal de diamonio, persulfato de potasio, 2,4,6-tri(2pyrydyl)-s-triazina (TPTZ), ácido 6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic (Trolox), fueron obtenidos de Sigma-Aldrich (St-Louis, USA). Etanol y metanol fue obtenido de Merck (Darmstadt, Germany). El agua fue desionizada usando un Milli-Q-system (Millipore, Bedford, Mass., USA).

3.3 Métodos
3.3.1 Extracción de la muestra
Se pesaron 2.5 gramos de cada muestra y se dividieron en tres matraces de Erlenmeyer. Luego, las muestras fueron sometidas a extracción con etanol al 80% de concentración (20mL) por 30 minutos en una placa de agitación magnética. La primera extracción no hidrolizada (NHE); la segunda extracción hidrólisis ácida (AHE) que contiene una solución (Etanol/agua/ácido acético\(^1\): 50/49.5/0.5, v/v/v) (18); la tercera extracción hidrólisis alcalina (BHE) que contiene una solución (0.1 M NaOH en etanol) (19). Los extractos fueron filtrados (Whatman\(^\circ\) papel filtro) y protegidos de la luz mediante el uso de papel aluminio. Finalmente, se mantuvieron a 4°C hasta antes del análisis. (Figura N° 2)

\(^1\) Ácido acético puro
Fig. 2: Flujograma de sistema de extracción de la muestra

Sistema de extracción de la muestra

Muestra (2,5 g)

Extracción en etanol
(80% → 20 ml)

Extracción no hidrolizada (NHE):
Etanol

Extracción de hidrólisis ácida (AHE):
Etanol/agua/ácido acético
* (v: 50/49.5/0.5)

Extracción de hidrólisis alcalina (BHE):
0.1M NaOH en etanol

30 minutos

Se filtraron

Se protegieron con

Papel aluminio

Se mantuvieron

T° 4
3.3.2 Capacidad antioxidante en fase hidrofílica

3.3.2.1 Método del radical 2,2-difenil-2-picrilhidrazil (DPPH)

El análisis se basa en el método descrito por Brand-Williams et al. (19). Se utilizó la metodología del mismo con algunas modificaciones (20). Las modificaciones del presente estudio están en función a la concentración de DPPH y los volúmenes de reacción en este caso se utilizó 50 uL extracto + 950 uL DPPH de 100 umol/L (19).

El método DPPH es un radical libre estable soluble que es neutralizado mediante un mecanismo de transferencia de hidrógeno (21). El fundamento de este método consiste en que el DPPH tiene un electrón desapareado que, al entrar en contacto con una sustancia antioxidante capaz de donar un electrón, se percibe un desvanecimiento del color del radical de azul-violáceo a amarillo como se muestra en la (Figura N° 3) (22).

La reacción ocurre entre 50μL de muestra y 950μL de 100 μmol del radical 2,2-difenil-2-picrilhidrazil (DPPH) (20).

![Diagrama de la reacción del radical DPPH con molécula antioxidante](image)

Fig 3: Figura en la que se muestra la reacción del radical 2,2-difenil-2-picrilhidrazil (DPPH) con molécula antioxidante (Ramos-Escudero, 2010)
Para este propósito, los extractos no hidrolizados (NHE), extracción hidrólisis alcalina (BHE) y extracción hidrólisis ácida (AHE) se diluyeron hasta las concentraciones necesarias y se incubaron con la solución de DPPH (100 μmol/L). Se tomó 50 μL de los extractos de no hidrolizados, alcalinos y ácidos y se mezcló con 950 μL de la solución DPPH por 30 minutos en la oscuridad y se midió la absorbancia a 515 nm. Se utilizó Trolox (50 - 400 μmol/L) como estándar y los resultados se expresaron en micromoles de Trolox equivalente (TE) por gramos de muestra. Para ello se realizó la curva de calibración % inhibición DPPH = 0,2326 (μmol TE/L) + 3,2597; R² = 0,9727.
(Figura N° 4).

Para la determinación del % de inhibición se utilizó la siguiente fórmula:

% DPPH inhibición = 100 - [ABS muestra] t=30min/ [ABS DPPH] t=0 x 100

Donde:

- [ABS muestra] t=30min, es la absorbancia de la muestra al minuto 30
- [ABS DPPH] t=0, es la absorbancia del DPPH sin antioxidante.

![Fig. 4: Figura en la que se muestra la curva de calibración del radical 2,2-difenil-2-picrilhidrazil (DPPH)](attachment://fig4.png)
3.3.2.2 Método del Ácido 2,2'-azino- bis-(3-etilbenzotiazolina)-6- sulfónico (ABTS)

El método Ácido 2, 2'-azino- bis-(3-etilbenzotiazolina)-6- sulfónico (ABTS) fue descrito por Thaipong et al. (23), basado en la capacidad de la muestra para inhibir el radical ABTS •+. Mide la actividad de compuestos hidrofílicos y lipofílicos expresados como µmol Trolox/g de muestra (21,24). El ABTS•+ es generado tras una reacción que puede ser química (dióxido de manganeso, persulfato potasio, ABAP), enzimática (peroxidasa, mioglobina) o electroquímica. Su mecanismo de neutralización es principalmente por transferencia de electrones (25). La evaluación de la capacidad antioxidante por este método se fundamenta en la cuantificación de la decoloración del radical por su interacción con moléculas donantes de electrones o hidrógenos como los compuestos antioxidantes, esto se aprecia en la (Figura N°5) (26).
Fig. 5: Figura en la que se muestra la reacción del radical Ácido2, 2’-azino- bis-(3- etilbenzotiazolina)-6- sulfónico (ABTS) en presencia de un componente antioxidante (Ramos-Escudero, 2010).

La capacidad antioxidante ABTS fue determinada mediante el ensayo de persulfato de potasio/ agente ABTS. Se preparó una solución estándar de 7.4 mmol/L ABTS y 2.6 mmol/L de persulfato de potasio y se mezclaron en cantidades iguales. Luego, se dejó que la reacción ocurra por 12 horas en la oscuridad. La solución ABTS que se utilizó se preparó diluyendo 1mL de la solución stock con 60 mL de metanol (27). Se tomó 50 μL de los extractos no hidrolizados(NHE), extracción hidrólisis alcalina (BHE) y extracción hidróisis ácida (AHE), se mezcló con 950 μL de la solución de ABTS y se dejó reaccionar por 30 minutos en la oscuridad (20). La reacción se midió a 734 nm. Se utilizó Trolox (50 - 800 μmol/L) como estándar (% ABTS inhibition = 0,1965 (μmol TE/L) + 12,796; R² = 0,9931) (Figura N° 6). Finalmente, los resultados se expresaron en micromoles de Trolox equivalente (TE) por gramo de muestra.
3.3.2.2 Método de poder antioxidante reductor del hierro (FRAP)

La capacidad antioxidante fue determinada por el método desarrollado por Benzie and Strain 1996 con algunas modificaciones (23). El método FRAP (Poder Antioxidante Reductor del Hierro), por sus siglas en inglés, mide la capacidad antioxidante por el ensayo del poder reductor férrico. En este método se evalúa el poder reductor de la muestra en base a su capacidad de reducir el hierro férrico acomplejado con 2, 4,6-tri(2-piridil)-s-triazina (TPTZ) a su forma ferrosa de color azul, en el que la TPTZ es una sal férrica que se usó como oxidante tal como se aprecia en la (Figura N°7) (25). La capacidad antioxidante se determina como un aumento de la absorbancia a 593 nm. Para mantener la solubilidad del hierro y poder impulsar la transferencia de electrones se requiere realizar este ensayo en un medio ácido (28).
Fig. 7: Figura en la que se muestra la reducción de [Fe (III) (TPTZ)₂]³⁺ en presencia de antioxidante (Ramos-Escudero, 2010).

La capacidad antioxidante fue medida usando reducción férrica/antioxidante y ácido ascórbico. La solución utilizada incluyó: Buffer acetato: 300 mmol/L a un pH 3,6 y 10 mmol/L de 2, 4,6-Tripyridyl-s-Triazine-TPTZ en 40 mmol/L, HCl y 20 mmol/L FeCl₃. La solución que se utilizó se preparó mezclando 37,5 mL de buffer acetato con 3,75 mL de TPTZ y 3,75 mL FeCl₃. La medición de la capacidad antioxidante se desarrolló en una cubeta, mezclando 50 µL de los extractos no hidrolizados (NHE), extracción hidrólisis alcalina (BHE) y extracción hidrólisis ácida (AHE) con 950 µL de la solución FRAP por 30 minutos en la oscuridad. La absorbancia fue medida a 593 nm. Se utilizó Trolox (25 - 800 µmol/L) como estándar (ABS₅₉₄ₙₐₐ = 0,0019 (µmol TE/L) + 0,0812; R² = 0,9991) (Figura N° 8) y los resultados se expresaron en micromoles de Trolox equivalente (TE) por gramo de muestra.

Fig. 8: Figura en la que se muestra la curva de calibración del método Poder antioxidante reductor del hierro (FRAP)
3.3.3 Índice compuesto de potencia antioxidante

Se determinó un índice general de la potencia antioxidante asignando a todos los ensayos (DPPH, ABTS y FRAP) un igual peso. Se le asignó un valor de 100 al mejor score para cada prueba y luego se calculó un índice de puntuación para todas las demás muestras dentro de la prueba, tal como se muestra: Puntaje del índice antioxidante = [(puntuación de la muestra/mejor puntuación) x 100]. Para el valor promedio general, se determinó mediante la división de la suma de los índices individuales entre el número de pruebas (DPPH, ABTS y FRAP). Los promedios de los tres ensayos para cada muestra fueron considerados como el índice de la potencia antioxidante (29).

3.3.4 Análisis estadístico

Para determinar la capacidad antioxidante y el índice compuesto de potencia antioxidante se analizó cada tipo de harina de quinua, kiwicha y kañiwa (a granel, artesanal e industrial) por triplicado. Los resultados se presentan en medianas y rango intercuartílico. Para determinar la normalidad de los datos se utilizó el test de Shapiro Wilk. Seguidamente, si la distribución no seguía una distribución normal se utilizó la prueba de Friedman, prueba no paramétrica para muestras dependientes, y se consideró como diferencia significativa un p< 0,05. El análisis estadístico se realizó usando Stata®, versión 14.2.
IV. RESULTADOS

4.1 Capacidad antioxidante por método DPPH

La capacidad antioxidante medida por el método DPPH de los extractos no hidrolizados (NHE), hidrólisis alcalina (BHE) e hidrólisis ácida (AHE) según las formas de presentación: artesanal, a granel e industrial (Figura N°9). Se encontró que la hidrólisis ácida fue la que mostró mayor capacidad antioxidante (hidrólisis ácida: 37,74-120,41 μmol TE/g extracto no hidrolizado: 3,81-36,00 μmol TE/g; extracto alcalino: 18,19-25,33). Respecto a los valores encontrados para la capacidad antioxidante según este método, se encontró que la kañiwa obtuvo valores mayores en comparación a kiwicha y quinua, en los extractos no hidrolizados y el extracto hidrolizado ácido; sin embargo en el extracto alcalino los valores son bastante similares. La capacidad antioxidante en el extracto no hidrolizado de la harina de kañiwa artesanal fue significativamente menor que la de harina a granel (35, 68 μmol TE/g, p=0.0495) y marginalmente menor que la de harina industrial (36, 00 μmol TE/g, p=0.0665). La mayor capacidad antioxidante alcalina y ácida se encontró en la harina de kañiwa artesanal (23, 70 μmol TE/g) y a granel (120, 41 μmol TE/g), respectivamente. En cuanto a la harina de kiwicha, se encontró diferencia significativa en los tres medios de extracción (no hidrolizada, alcalina y ácida). En el caso de la extracción libre (NHE) la harina que obtuvo el valor más alto fue la harina de kiwicha industrial (harina industrial: 14,40 μmol TE/g; harina a granel: 5,85 μmol TE/g y harina artesanal: 3,81 μmol TE/g). En el medio alcalino, la harina de kiwicha artesanal tuvo la mayor capacidad antioxidante (harina artesanal: 23,46 μmol TE/g, harina a granel: 19,76 μmol TE/g y harina industrial: 19,12 μmol TE/g). En la extracción ácida (AHE), se observó mayor capacidad antioxidante en la harina de kiwicha industrial (harina
En la harina de quinua, se halló diferencia significativa sólo para el medio alcalino entre los tres tipos de harina, en este caso destacó la muestra de harina de quinua en su presentación industrial (harina industrial: 25, 53 μmol TE/g, harina a granel: 20, 23 μmol TE/g y harina artesanal: 18, 19 μmol TE/g). En el caso del extracto no hidrolizado sólo se encontró que la harina a granel (harina granel: 8, 54 μmol TE/g y harina industrial: 7, 22 μmol TE/g) tenía significativamente mayor capacidad antioxidante en relación a la harina industrial, pero en el extracto ácido la harina artesanal fue que mostró significativamente menor capacidad antioxidante (harina artesanal: 41, 61 μmol TE/g).

![Diagrama](image.png)

Fig. 9: Figura en la que se muestra la capacidad antioxidante por el método 2,2-difenil-2-picrilhidrazil (DPPH) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción.
4.2 Capacidad antioxidante por método ABTS

Por otro lado, el segundo método empleado fue ABTS, este se usó para determinar la capacidad antioxidante en las harinas de cereales en sus tres formas de presentación por tipo de extracción no hidrolizado (NHE), hidrólisis alcalina (BHE) e hidrólisis ácida (AHE) (Figura N° 10). Dicho análisis arrojó mayor capacidad antioxidante en la hidrólisis alcalina (100,18-309,94 μmol TE/g) y en la ácida solo para harina de kañiwa artesanal (harina artesanal 320,59 μmol TE/g) y quinua industrial (harina industrial: 122,50 μmol TE/g) en contraste con la extracción no hidrolizada (15,22-54,69 μmol TE/g). Para el caso de la extracción no hidrolizada la muestra de harina de kañiwa industrial presentó una mayor capacidad antioxidante, (harina industrial: 54,69 μmol TE/g) mientras que la quinua artesanal (harina artesanal: 15,22 μmol TE/g) presentó el menor valor. En la extracción alcalina la muestra que obtuvo el mayor valor fue la harina de kañiwa artesanal (harina artesanal: 309,94 μmol TE/g) a diferencia de la harina de kiwicha artesanal (harina artesanal: 100,18 μmol TE/g) que obtuvo menor capacidad antioxidante. En cuanto para el extracto ácido destacó la harina de kañiwa artesanal (harina artesanal: 320,59 μmol TE/g) y el resultado menor fue para la harina de kiwicha artesanal (harina artesanal: 21,61 μmol TE/g). Por lo general, la capacidad antioxidante fue mayor en la harina de kañiwa, no importando el método de extracción.
Al comparar las harinas por forma de presentación: artesanal, a granel e industrial se encuentra que en casi todos los casos hubo diferencias significativas por tipo de presentación, excepto cuando se compara la harina de quinua en medio ácido, en donde solo se encuentra diferencia entre harina a granel e industrial (harina a granel: 113,45 μmol TE/g y harina industrial: 122,50 μmol TE/g). Sin embargo, no se encuentra un patrón claro que nos indique en los diferentes medios de extracción tendencia hacia mayor capacidad antioxidante en una misma forma de presentación al interior de cada cereal.

![Diagrama de comparación de capacidad antioxidante](image)

Fig. 10: Figura en la que se muestra la capacidad antioxidante por el método ácido2,2’-azino- bis-(3- etilbenzotiazolina)-6- sulfónico (ABTS) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción. *(TE: Trolox Equivalente. Los resultados se muestran en medianas y rango intercuartílico. Letras diferentes indican diferencia significativa con un p-value < 0.05, mientras que letras iguales indica que no hay diferencia significativa.)*
4.3 Capacidad antioxidante por método FRAP

Finalmente, se midió la capacidad antioxidante por el método FRAP, el cual determinó la capacidad antioxidante en las harinas de cereales en sus tres formas de presentación según el tipo de extracción no hidrolizado (NHE), hidrólisis alcalina (BHE) e hidrólisis ácida (AHE) (Figura N° 11). Se encontró que la extracción de hidrólisis ácida mostró valores mayores (119,64-269,28 μmol TE/g), en comparación con la extracción alcalina (56,67-136,52 μmol TE/g) y no hidrolizada (44,01-110,76 μmol TE/g). La harina de kañiwa en general mostró mayor capacidad antioxidante, excepto en el extracto libre, cuando se compara con kiwicha.

Para la extracción no hidrolizada la muestra de mayor valor la obtuvo la harina de kañiwa artesanal (harina artesanal: 110,76 μmol TE/g) siendo el de menor valor la harina de quinua artesanal (harina artesanal: 44,011 μmol TE/g). En la extracción alcalina se encontró el valor más alto para la harina de kañiwa artesanal (harina artesanal: 133, 52 μmol TE/g), mientras que para la harina de quinua artesanal (harina artesanal: 56, 67 μmol TE/g) contó con el valor más bajo. Para el medio ácido la harina de kañiwa industrial (harina industrial: 269, 28 μmol TE/g) resaltó, en contraste con la harina de quinua artesanal (harina artesanal: 119, 64 μmol TE/g), que al igual que en las dos extracciones anteriores, presentó el menor valor. De igual forma, al igual que en los otros dos métodos usados para la determinación de la capacidad antioxidante, se evaluaron los tres tipos de cereales según su forma de presentación: artesanal, granel e industrial. Para el caso de la harina de kañiwa, se encontró diferencia significativa sólo entre los tres tipos de harina en el medio de extracción alcalino, en el cual destacó la harina de kañiwa artesanal (harina artesanal: 133,52 μmol TE/g; harina industrial: 123,95 μmol TE/g y harina a granel: 111,42 μmol TE/g). En las muestras de harina de kiwicha se obtuvo diferencia significativa para los medios de extracción alcalino y ácido entre los tres
tipos de presentación. En el primero, se encontró que la harina de kiwicha a granel (harina a granel: 99,67 μmol TE/g; harina industrial: 93,05 μmol TE/g y harina artesanal: 85,71 μmol TE/g) alcanzó una mayor capacidad antioxidante. De igual modo sucedió para la extracción ácida, en la cual la harina de kiwicha a granel (harina a granel: 188,72 μmol TE/g) consiguió el resultado más alto frente a las muestras de kiwicha en sus presentaciones industrial y artesanal (harina industrial: 181, 13 y harina artesanal: 154,45 μmol TE/g, respectivamente). Por último, en las muestras de quinua en los medios de extracción no hidrolizado y ácido, se encontraron diferencias significativas. Para la extracción no hidrolizada resaltó la harina de quinua a granel (harina a granel: 78,01 μmol TE/g), luego la harina de quinua industrial (harina industrial: 75,74 μmol TE/g) y en último lugar la harina de quinua artesanal (harina artesanal: 44,01 μmol TE/g). Igualmente ocurrió en el medio de extracción acida, los resultados indicaron que la muestra de quinua a granel (harina a granel: 183,99 μmol TE/g) mostró la mayor capacidad antioxidante, seguido de la harina de quinua industrial (harina industrial: 160,49 μmol TE/g) y en último caso la harina de quinua artesanal (harina artesanal: 119,64 μmol TE/g).
Fig. 11: Figura en la que se muestra la capacidad antioxidante por el método FRAP (Poder antioxidante reductor del hierro) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción. (TE: Trolox Equivalente. Los resultados se muestran en medianas y rango intercuartílico. Letras diferentes indican diferencia significativa con un p-value < 0.05, mientras que letras iguales indica que no hay diferencia significativa.)

4.4 Índice compuesto de potencia antioxidante

El índice compuesto de potencia antioxidante determinado para las muestras de kañiwa, kiwicha y quinua en sus tres presentaciones y sus distintas extracciones se basa en análisis resumido de los tres métodos antioxidantes usados tanto DPPH, como ABTS y FRAP (Figura N°12). De manera global, el índice compuesto de potencia mostró que para la extracción no hidrolizada (NHE) fue la muestra de harina de kañiwa industrial
(88,74 μmol TE/g) y para la extracción alcalina (BHE) y ácida (AHE) fue la harina de kañiwa artesanal (96,24 μmol TE/g y 91,60 μmol TE/g, respectivamente).

En general, según se observó en el índice compuesto de potencia antioxidante, las muestras de kañiwa fueron mayores en comparación que las muestras de kiwicha y quinua.

En cuanto a la comparación de los tres tipos de cereales con sus presentaciones artesanal, a granel e industrial, se obtuvo que para las muestras de harina de kañiwa hubo diferencia significativa en los tres medios de extracción usados. En el extracto no hidrolizado destacó la harina kañiwa industrial (88,74 %) en el extracto alcalino y ácido destaco la harina de kañiwa artesanal (96,24 % y 91,60% respectivamente). En cuanto a la muestra de harina de kiwicha la diferencia significativa se encontró en las extracciones no hidrolizada y ácida. Para la extracción no hidrolizada la mayor capacidad antioxidante se encontró en la harina de kiwicha industrial (50,23 %). En la extracción ácida la harina de kiwicha a granel (63,74 %) frente a las otras muestras.

Finalmente, igual que en el caso de la kiwicha, para la harina de quinua las extracciones libres y ácidas demostraron tener diferencia significativa en sus tres tipos de presentaciones. En el caso de la extracción libre, la harina de quinua a granel (53,01%) mostró una mayor capacidad antioxidante según el índice compuesto. En la hidrólisis ácida la harina de quinua en su presentación a granel (49,64 %) fue la que resaltó.
Fig. 12: Índice compuesto de actividad antioxidante en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción.

(\%: Porcentaje. Los resultados se muestran en medianas y rango intercuartílico. Letras diferentes indican diferencia significativa con un p-value < 0,05, mientras que letras iguales indica que no hay diferencia significativa.)
V. DISCUSIÓN

El estudio encontró que la harina de kañiwa mostró significativamente mayor capacidad antioxidante, en relación a las muestras harinas de kiwicha y quinua. La hidrólisis ácida obtuvo mayor capacidad antioxidante en las muestras de harinas de cereales para los métodos DPPH y FRAP, a diferencia del método ABTS en el cual la extracción que presentó mayores valores fue la extracción alcalina.

La mayor capacidad antioxidante de la harina kañiwa en cualquiera de los tres extractos (no hidrolizado, alcalino y ácido) pudo estar relacionada con la presencia de polifenoles, flavonoides y otros compuestos antioxidantes. Abderrahim et al., 2012 informaron que la kañiwa (Chenopodium pallidicaule) es un cereal rico en compuestos antioxidantes, algo que también puede estar vinculado a sus condiciones severas de cultivo como: la altitud, el frío y la sequía (30). Se menciona que las plantas que soportan condiciones climáticas extremas (heladas, sequías y bajas temperaturas), como es el caso de la kañiwa, ejercen una protección innata contra la oxidación lo cual le confiere su mayor capacidad antioxidante en comparación a los otros cereales (31).

Por otra parte, en el estudio de Tang et al. evaluaron la caracterización de compuestos fenólicos y capacidad antioxidante en tres genotipos de quinua (blanco, rojo y negro), ellos identificaron 23 compuesto fenólicos. En este estudio se encontró que las semillas de pigmentación más oscura fueron las que tuvieron mayor contenido de compuestos bioactivos y capacidad antioxidante (32). Si bien en el presente estudio sólo se analizaron muestras de pigmentos blancos o claros fueron las muestras de kañiwa quienes presentaron mayor capacidad antioxidante debido a su pigmentación ligeramente mayor, en comparación de las muestras de quinua y kiwicha.
La capacidad antioxidante de las harinas de cereales evaluadas es diferente a la reportada en otros estudios. Chirinos et al. (2013) encontraron que de capacidad antioxidante usando el reactivo DPPH y ABTS para la kiwicha estuvo entre 1,2 y 3,7 μmol TE/g, mientras que en una muestra de quinua fue entre 5,3 y 8,3 μmol TE/g, respectivamente (33). Cabe resaltar que estos resultados se presentaron en granos enteros.

Según Quispe, la capacidad antioxidante medida por el método ABTS en dos variedades de harina extruida de quinua Salcedo y Pasankalla (orgánica y convencional) fueron: (i) variedad Salcedo: 11,79 μmol TE/g para la orgánica y 9,67 μmol TE/g para la convencional, (ii) variedad Pasankalla: 24,51 μmol TE/g para el tipo orgánico y 21,15 μmol TE/g para la convencional (34). Las diferencias pueden deberse a diversos aspectos: método usado: ABTS; solvente, método de extracción, variedad, selección de la muestra, tratamiento de la muestra. El autor sólo analizó la capacidad antioxidante por un método (ABTS) y usó el medio de extracción no hidrolizado con un disolvente distinto al del presente estudio (metanol). Algunos estudios encontraron que el metanol extrae mejor los compuestos fenólicos al ser un disolvente más polar, a diferencia del etanol (35). Sin embargo, los resultados encontrados en el estudio de Quispe fueron menores a los de este estudio. Ello puede deberse a la diferencia: en el tratamiento de la muestra ya que sus muestras fueron sometidas a un proceso de laminado y extrusión antes del tratamiento de molienda para la obtención de la harina. Mediante la extrusión se usa calor, por lo que podríamos hablar de una muestra pre-cocida, por lo tanto las capacidad antioxidante se reduce. Además el molino usado en ese caso fue un molino martillo, mientras que en este estudio fue un molino manual. Investigaciones indican
que los compuestos fenólicos pueden variar según el tipo de grano, genotipo, parte del grano usado en la elaboración de harina, el procesamiento realizado, almacenamiento del producto y factores de tipo ambiental (9).

En el presente estudio la realización del tamizado, en las muestras de harina artesanal, podría haber inducido a un refinado y de esta forma perder componentes bioactivos importantes. La mayoría de estos compuestos se encuentran en las capas más externas del grano, principalmente en la aleurona (9). Algunos estudios indican que el almacenamiento de granos de cereales por un tiempo mayor a seis meses puede afectar el contenido de fenoles totales, los cuales pueden reducirse hasta aproximadamente 66%, destruyéndolos mediante reacciones de oxidación a causa de su almacenamiento prolongado (36). En el caso de las muestras analizadas, no se pudo corroborar el tiempo de almacenamiento lo cual pudo haber influido en la capacidad antioxidante de las muestras. Sin embargo, el estudio encontró que la capacidad antioxidante es mayor a la reportada en otros estudios que puede ser debido a que además de las técnicas usadas para la extracción y el tratamiento al que fue sometido la muestra, nuestras muestras pudieron tener una mezcla de variedades ya que no se tomó en cuenta la variedad de la muestra al no poder identificar el origen ni la variedad de cada cereal en sus distintas presentaciones.

Al analizar los tres tipos de presentación en las harinas de kañiwa, kiwicha y quinua mediante el índice compuesto de potencia antioxidante (que establece una síntesis de los tres tipos de métodos de capacidad antioxidante) se pudo observar que los resultados no siguen una tendencia definida. Las harinas en su presentación a granel e industrial fueron las muestras que presentaron una mayor capacidad antioxidante, a excepción de la kañiwa en extracto alcalino y ácido. En cuanto a la presentación que mostró un menor
valor fue la artesanal, a excepción de la kiwicha en extracto no hidrolizado, kañiwa en extracto alcalino y ácido. Ello puede deberse a la mezcla de distintas variedades tanto en los granos enteros usados para la elaboración de la harina artesanal como las otras dos presentaciones de harina a granel e industrial. Visualmente el grano de harina parecía más fino en comparación a la artesanal. El molino usado en el caso de la harina artesanal fue un molino manual para granos que puede generar partículas más gruesas a los obtenidos por un molino industrial, a pesar de los procesos de tamizado realizados. Estudios indicaron que un tamaño de partícula menor puede presentar mayor capacidad antioxidante al aumentar la superficie de contacto con el reactivo, lo cual explicaría lo sucedido en el estudio (37). No obstante, en otro estudio al respecto se observó que al comparar tres tamaños de partículas: pequeño, mediano y grande no hubo diferencia significativa al comparar la capacidad antioxidante de los tres (38).

Si bien los procesos de industrialización pueden afectar de manera positiva o negativa la capacidad antioxidante de un alimento, esto va a depender de la naturaleza, estructura y solubilidad del antioxidante (16, 8). Por lo que no necesariamente un alimento que contenga gran cantidad de compuestos fenólicos va a presentar una mayor capacidad antioxidante, sino va a depender del antioxidante y los factores antes mencionados (39).

Los compuestos fenólicos están unidos covalentemente a la matriz alimenticia y no pueden extraerse en agua o mezclas de disolventes acuosos/órganicos debido a que aproximadamente el 90% de estos compuestos se encuentra ligados (40,41). Es por ello, que los compuestos ligados requieren de cierta hidrólisis para poder liberar o extraer los compuestos fenólicos presentes. Asimismo, en cada tipo de extracción de hidrólisis tanto ácida como alcalina se obtienen los compuestos solubles según el tipo de medio. A
diferencia de la extracción no hidrolizada, en donde se extraen los compuestos fenólicos que se encuentren libres en el alimento. Por ello, en este contexto, la capacidad antioxidante de las muestras de cereales se mide en tres medios distintos de extracción ya que al usar un solo medio podría estar subestimada (42). Esto se pudo confirmar en el estudio, en donde el medio de hidrólisis influyó en la concentración de DPPH, ABTS y FRAP, encontrando que por lo general el medio no hidrolizado muestra la menor cantidad. Estos resultados también se confirman con otros estudios en los cuales se menciona que los compuestos fenólicos aumentaron después de la hidrólisis (32). Por ejemplo, en un estudio se encontró que en extractos de arroz integral germinado la hidrólisis básica presentó una mayor actividad de eliminación de ABTS (43).

Debido a la diversidad y complejidad de las reacciones entre los radicales y los antioxidantes, un sólo método no es suficiente para determinar el perfil antioxidante de una muestra. Por ello, la necesidad de utilizar varios métodos para proveer una mejor comparación e interpretación de los resultados (44, 45). En el caso de DPPH es un método basado en la trasferencia de átomos de hidrógeno que, al entrar en contacto con el antioxidante presente en la muestra, le dona un electrón (22). El método ABTS es un radical que al interactuar con los donadores de electrones o hidrógenos de los antioxidantes presentes en las muestras produce una decoloración del radical convirtiéndolo en incoloro (26). Ambos métodos son cuantitativos y evalúan la capacidad antioxidante de forma directa, en el caso del DPPH sirve para detectar moléculas polares mientras que ABTS cuantifica moléculas de tipo apolar. A diferencia del método FRAP que evalúa la capacidad antioxidante de forma indirecta y la mide de acuerdo a su capacidad para reducir el complejo férrico-TPTZ incoloro al complejo ferroso- TPTZ coloreado (46). La capacidad antioxidante medida por diferentes
métodos mostró, en general, que los valores de FRAP y ABTS fueron superiores a los valores de DPPH. Las diferencias numéricas pueden reflejar los mecanismos diferentes por los que actúan los fitoquímicos antioxidantes para actuar contra los diferentes radicales presentes o formados durante cada reacción específica (33). La capacidad del antioxidante de neutralizar los radicales usados difiere según la estructura química, solubilidad, comportamiento y ubicación dentro de la estructura alimentaria en la cual esté presente el antioxidante (8). Además, informes anteriores encontraron que el número y la posición de los grupos hidroxilo y la presencia de diferentes esqueletos de flavonoides en los compuestos antioxidantes aumenta significativamente la capacidad de eliminación de radicales libres; sin embargo, este nivel de análisis sólo se puede lograr al realizar la técnica de cromatografía líquida de amplio espectro (HPLC) y en este estudio sólo se analizó por espectroscopía molecular (41).

El poco interés por el consumo de cereales como fuente de compuestos antioxidantes ha llevado a que actualmente se realice mayor investigación en estos alimentos por la presencia de los componentes fenólicos que cumplen un papel importante en la salud. Estos pueden contribuir en la prevención de enfermedades crónicas degenerativas, en particular cuando se consumen una cantidad diaria de manera permanente (8,9). Los resultados obtenidos del presente estudio demuestran que las harinas de cereales de kañiwa, kiwicha y quinua son fuente importante de polifenoles (compuestos bioactivos) los cuales constituyen los principales antioxidantes de la dieta. No obstante, aún existe una limitada información que avale un nivel seguro de ingesta o recomendación sobre el consumo de estos compuestos bioactivos con beneficios para la salud (36).
Se han descrito múltiples estudios acerca de las propiedades benéficas que pueden tener los compuestos fenólicos en la salud humana, estos beneficios son gracias a su capacidad antioxidante. Los polifenoles, son un ejemplo de compuestos fenólicos que brindan efectos antilipemiante (al atenuar la oxidación del LDL) y antiaterogénico otorgándole un efecto cardioprotector y vasodilatador al inhibir la enzima convertidora de angiotensina (47). Además, estos compuestos han demostrado tener acciones antiinflamatorias, estudios indican que los compuestos fenólicos pueden disminuir el daño ejercido sobre el ADN, los procesos inflamatorios asociados con la producción de IL-6, así como disminuir la proteína presente en fase aguda (PCR) (47).

Por otro parte, las harinas de cereales de kañiwa, kiwicha y quinua presentan un valor añadido respecto a otros cereales, estas harinas son productos sin gluten lo cual puede ser consumido por personas con intolerancia al gluten (celíacos) (36). Las harinas de estos cereales pueden ser usadas en distintas preparaciones como mazamorras, refrescos, galletas, panes y barras energéticas. Su uso potencial en productos de panificación para intolerantes al gluten puede ser una forma de promover el consumo de este tipo de harina de cereales. Álvarez-Jubete et al. usaron kiwicha, quinua y trigo sarraceno o alfórfón, para mejorar el contenido de nutrientes de productos libres de gluten, como resultado se obtuvieron panes con mayor contenido de compuestos fenólicos, capacidad antioxidante y de gran valor nutricional (48).

5.1 Limitaciones y fortalezas

La principal limitación del estudio radica en que no se pudo determinar la variedad de las muestras ya que no se encontró la información acerca del tipo de semilla, origen ni condiciones de post-cosecha tanto en los productos en sus presentaciones a granel sin
etiqueta y empaquetadas a nivel industrial con etiqueta, así como los granos utilizados para la elaboración de la harina artesanal. Sin embargo, las muestras utilizadas para el análisis reflejan la forma en la que los consumidores adquieren estos productos.

En cuanto a las fortalezas del estudio, en primer lugar tenemos que el realizar el análisis en distintos tipos de extracción en medio no hidrolizado, hidrólisis ácida e hidrólisis alcalina nos permitió extraer no sólo los compuestos que se encuentran de forma libre en el alimento, con la extracción no hidrolizada, sino que permitió extraer los compuestos ligados solubles en distintos medios, ácido y alcalino, de esta forma se amplía el conocimiento de los compuestos fenólicos presentes en las harinas de cereales. Además, el realizar la evaluación de la capacidad por tres métodos de análisis nos permitió tener una mejor idea de la diferencia que existe en los mecanismos de acción de los radicales al neutralizar los antioxidantes presentes en la muestra, así como enriquecer la comparación y resultados obtenidos. Por último, el desarrollo del potencial contenido en los componentes bioactivos presentes en estos cereales puede ser de vital importancia para su futuro uso en la industria alimentaria como antioxidantes naturales y con una aplicación nutracéutica.
VI. CONCLUSIONES

- Los resultados demostraron que la capacidad antioxidante en kañiwa fue mayor que en las muestras de kiwicha y quinua, para los extractos no hidrolizados (NHE), alcalinos (BHE) y ácidos (AHE), en los tres tipos de métodos de análisis usados DPPH, ABTS y FRAP. Esto se cumple en todos los casos, excepto en el método DPPH por extracción alcalina (BHE) en el cual la quinua industrial obtuvo un mayor resultado. En cuanto a los medios de extracción, se puede concluir que la hidrólisis ácida y alcalina tuvo resultados mayores que el extracto no hidrolizado. Para el método DPPH y FRAP fue la hidrólisis ácida y para el ABTS fue la alcalina.

- Los valores más altos de capacidad antioxidante se observaron en los métodos ABTS y FRAP siendo el método DPPH el método más débil en cuanto a secuestro de compuestos bioactivos.

- Con respecto al índice compuesto de potencia antioxidante, este análisis corroboró la superioridad de la kañiwa frente a los otros cereales. No obstante, dicha prueba no evidenció un patrón entre las muestras artesanales, a granel e industriales en sus distintas extracciones. Pero se podría remarcar que las presentaciones a granel e industrial presentaron valores mayores de capacidad antioxidante en comparación con la artesanal, sin embargo, esto no sucede en todos los casos.
VII. RECOMENDACIONES

- Debido a la gran capacidad antioxidante que estos cereales presentan muestran un gran potencial para su desarrollo nutraceutico y desarrollo de productos libres de gluten. Los compuestos fenólicos también han demostrado tener beneficios para la salud. Por lo cual se sugiere evaluar la capacidad antioxidante por variedades e identificar los compuestos bioactivos que le conceden su poder antioxidante.

- Se recomienda realizar investigaciones futuras para estimar recomendaciones de ingesta diarias de compuestos fenólicos, dado que en la actualidad no se tiene una recomendación específica. Además de estudiar su biodisponibilidad, absorción e impacto in-vivo en la salud.

- Por otro lado, se sugiere la realización de futuros estudios en base a las muestras sometidas a procesos de cocción debido a que las harinas de cereales no se consumen en su forma cruda sino en distintas preparaciones culinarias y, como ya se había mencionado anteriormente, estos procesos puedes influir en la capacidad antioxidante de las harinas de cereales.
VIII. GLOSARIO

- **ABTS**: Abreviatura del ácido 2’,2’-azino-bis-(3-etilbenzotiazolina)-6-sulfónico. Este es un método basado en la capacidad de la muestra para inhibir el radical ABTS •+ mediante un mecanismo de neutralización por transferencia de electrones.

- **Capacidad antioxidante**: Es la habilidad de los compuestos antioxidantes para captar y estabilizar los radicales libres.

- **Compuestos bioactivos**: Compuestos químicos que presentan una actividad biológica en el organismo traducida en una función benéfica para la salud.

- **Compuestos fenólicos**: Compuestos orgánicos en cuyas estructuras moleculares contienen al menos un grupo fenol, un anillo aromático unido a al menos un grupo funcional.

- **DPPH**: Abreviatura del radical 1,1-difenil-2-picrilhidrazil. Este es un radical libre estable soluble que es neutralizado mediante un mecanismo de transferencia de hidrógeno.

- **Folin Ciocateu**: El reactivo de Folin-Ciocalteu es una mezcla de fosfomolibdato y fosfotungstato, usado para la determinación de antioxidantes fenólicos y polifenólicos.

- **FRAP**: El método FRAP (Poder Antioxidante Reductor del Hierro), por sus siglas en inglés, mide la capacidad antioxidante por el ensayo del poder reductor férrico.
• **Harina a granel:** Harina de cereales andinos (kañiwa, kiwicha y quinua) que fueron compradas al peso de un saco abierto en un mercado que fueron comercializadas sin etiqueta.

• **Harina artesanal:** Harina obtenida a partir de la molienda de los granos enteros de cereales andinos (kañiwa, kiwicha y quinua) comprados a granel en un mercado y que fueron tamizados.

• **Harina industrial:** Harina de cereales andinos (kañiwa, kiwicha y quinua) que se comercializa empaquetada en bolsa plástica en presentación de 500g y con etiqueta (éstas fueron previamente tostadas).

• **HPLC:** Abreviatura en inglés de cromatografía líquida de alta eficacia, es un tipo de cromatografía en columna utilizada frecuentemente en bioquímica y química analítica.

• **Metabolitos secundarios:** Compuestos químicos sintetizados por las plantas que no intervienen en funciones esenciales en ellas ni participan en procesos metabólicos primarios. Estos compuestos intervienen en la interacción entre las plantas y su medio ambiente (brindar pigmentos, proteger contra ataques de animales, atraer insectos polinizadores).

• **Nutraceúticos:** Sustancias químicas presentes en un alimento o parte de un alimento que proporciona beneficios para la salud y que se presenta en una matriz (píldoras, cápsulas, polvo) la cual administrada en dosis superiores a la presente en el alimento puede tener efectos beneficiosos en la salud, incluyendo la prevención y/o tratamiento de enfermedades.
IX. REFERENCIAS BIBLIOGRÁFICAS

31. Carrasco R, Encina CR. Determinación de la capacidad antioxidante y compuestos fenólicos de cereales andinos: quinua (Chenopodium quinua),

44. Agudo L. Técnicas para la determinación de compuestos antioxidante en alimentos. Rev de le educación en extremadura.2010:27-34
X. ANEXO

Anexo 1. Capacidad antioxidante 2,2-difenil- 2-picrilhidrazil (DPPH) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción.

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Harina</th>
<th>DPPH (μmol TE/g)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Extracto no hidrolizado (NHE)</td>
<td>Extracto alcalino (BHE)</td>
<td>Extracto ácido (AHE)</td>
</tr>
<tr>
<td>Kañiwa</td>
<td>Artesanal</td>
<td>19,41 (18,72-20,10)</td>
<td>23,70 (23,43-24,59)</td>
<td>108,75 (107,89-110,12)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>35,68 (33,90-39,78)</td>
<td>19,20 (18,52-19,96)</td>
<td>120,41 (117,83-122,81)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>36,00 (35,11-38,74)</td>
<td>22,85 (22,78-23,47)</td>
<td>102,22 (102,05-102,73)</td>
</tr>
<tr>
<td>Kiwicha</td>
<td>Artesanal</td>
<td>3,81 (3,40-4,29)</td>
<td>23,46 (21,39-23,73)</td>
<td>37,74 (37,57-40,47)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>5,85 (5,44-6,06)</td>
<td>19,76 (19,28-19,83)</td>
<td>47,70 (46,33-48,05)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>14,40 (13,11-14,74)</td>
<td>19,12 (18,78-19,12)</td>
<td>51,01 (48,45-51,86)</td>
</tr>
<tr>
<td>Quinua</td>
<td>Artesanal</td>
<td>8,19 (6,95-8,60)</td>
<td>18,19 (17,23-18,33)</td>
<td>41,61 (39,90-42,29)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>8,54 (8,34-9,63)</td>
<td>20,23 (19,88-23,39)</td>
<td>56,77 (52,13-59,18)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>7,22 (7,08-7,70)</td>
<td>25,33 (24,82-26,33)</td>
<td>52,05 (48,62-53,94)</td>
</tr>
</tbody>
</table>

(*TE: Trolox equivalente. Los valores se presentan en medianas y rango intercuartílico.)*

Anexo 2. Capacidad antioxidante ácido 2,2′-azino- bis-(3- etilbenzotiazolina)-6-sulfónico (ABTS) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción.

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Harina</th>
<th>ABTS (μmol TE/g)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Extracto no hidrolizado (NHE)</td>
<td>Extracto alcalino (BHE)</td>
<td>Extracto ácido (AHE)</td>
</tr>
<tr>
<td>kañiwa</td>
<td>Artesanal</td>
<td>33,46 (33,13-37,27)</td>
<td>309,94 (309,20-312,53)</td>
<td>320,59 (317,75-321,73)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>30,77 (30,61-31,50)</td>
<td>199,93 (196,02-202,53)</td>
<td>133,34 (127,08-136,76)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>54,69 (54,04-55,02)</td>
<td>161,64 (159,05-165,54)</td>
<td>60,89 (58,61-63,73)</td>
</tr>
<tr>
<td>Kiwicha</td>
<td>Artesanal</td>
<td>22,97 (21,19-23,30)</td>
<td>100,18 (99,53-107,34)</td>
<td>21,61 (19,34-22,18)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>15,39 (14,74-16,20)</td>
<td>129,55 (125,65-130,20)</td>
<td>26,80 (23,95-29,08)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>20,83 (19,69-21,72)</td>
<td>159,38 (155,49-163,91)</td>
<td>41,43 (36,33-44,84)</td>
</tr>
<tr>
<td>Quinua</td>
<td>Artesanal</td>
<td>15,22 (14,78-15,87)</td>
<td>134,00 (140,76-145,95)</td>
<td>110,51 (109,94-114,50)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>38,03 (37,38-38,35)</td>
<td>168,02 (166,72-168,07)</td>
<td>113,45 (110,60-118,58)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>26,17 (23,25-27,38)</td>
<td>119,46 (136,17-139,41)</td>
<td>122,50 (120,50-125,34)</td>
</tr>
</tbody>
</table>

(*TE: Trolox equivalente. Los valores se presentan en medianas y rango intercuartílico.*)
Anexo 3. Capacidad antioxidante FRAP (Poder antioxidante reductor del hierro) en harinas de kañiwa, kiwicha y quinua en sus tres presentaciones para cada medio de extracción.

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Harina</th>
<th>FRAP (μmol TE/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extracto no hidrolizado</td>
<td>Extracto alcalino</td>
</tr>
<tr>
<td></td>
<td>(NHE)</td>
<td>(BHE)</td>
</tr>
<tr>
<td>Kañiwa</td>
<td>Artesanal</td>
<td>110,76 (108,00-116,68)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>88,23 (85,80-92,64)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>90,41 (89,91-92,18)</td>
</tr>
<tr>
<td>Kiwicha</td>
<td>Artesanal</td>
<td>71,34 (70,75-77,05)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>73,64 (70,38-77,31)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>91,99 (89,39-96,10)</td>
</tr>
<tr>
<td>Quinua</td>
<td>Artesanal</td>
<td>44,01 (43,67-46,62)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>78,01 (77,84-79,26)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>75,74 (71,05-76,74)</td>
</tr>
</tbody>
</table>

(TE: Trolox equivalente. Los valores se presentan en medianas y rango intercuartílico.)

Anexo 4. Índice compuesto de capacidad antioxidante en harinas de quinua, kiwicha y kañiwa.

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Harina</th>
<th>Índice compuesto de potencia antioxidante (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extracto no hidrolizado</td>
<td>Extracto alcalino</td>
</tr>
<tr>
<td></td>
<td>(NHE)</td>
<td>(BHE)</td>
</tr>
<tr>
<td>Kañiwa</td>
<td>Artesanal</td>
<td>69,10 (68,18-70,28)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>75,48 (71,56-77,08)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>88,74 (88,24-92,13)</td>
</tr>
<tr>
<td>Kiwicha</td>
<td>Artesanal</td>
<td>37,09 (37,49-37,92)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>34,92 (34,11-36,81)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>50,23 (49,20-52,97)</td>
</tr>
<tr>
<td>Quinua</td>
<td>Artesanal</td>
<td>28,56 (28,07-29,39)</td>
</tr>
<tr>
<td></td>
<td>A granel</td>
<td>53,01 (52,27-53,04)</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>42,94 (42,18-43,71)</td>
</tr>
</tbody>
</table>

(TE: Trolox equivalente. Los valores se presentan en medianas y rango intercuartílico.)